Quantitative Characterization and Representation of Global Microstructural Geometry

Arun M. Gokhale, Georgia Institute of Technology

IT IS THE CENTRAL PRECEPT of materials science that processing governs microstructure and the microstructure influences the properties and performance of materials. Consequently, quantitative characterization and mathematical representation of microstructure are of considerable importance in materials science. The discipline of quantitative characterization of microstructural geometry is called quantitative metallography or stereology. The objective of quantitative metallography/stereology is to describe the geometric characteristics of the features (for example, grains, voids, precipitates, dislocations) present in the microstructure in quantitative terms, such as amounts (how much?), numbers (how many?), and sizes (how large?).

Material microstructures are three-dimensional and, therefore, the attributes of three-dimensional microstructural geometry are of core interest. Nonetheless, as most of the materials are opaque, the microstructural observations are usually on the two-dimensional (2-D) metallographic sections through the three-dimensional (3-D) microstructural domains of interest. The microstructure observed in a metallographic section consists of intersections of the features in the 3-D microstructure with the sectioning plane. Therefore, in a metallographic plane, the volumes (e.g., grains, voids, particles) in a 3-D microstructure appear as areas, and the surfaces (e.g., grain boundaries, precipitate interfaces) appear as lines. Clearly, a 2-D metallographic section does not contain all the information concerning the true 3-D microstructural geometry. Even so, numerous important geometric attributes of 3-D microstructures can be estimated from the measurements that can be performed on 2-D metallographic sections.

It is well known that material microstructures are of stochastic nature. Consequently, no two microstructures are exactly alike; no two fields of view in a microstructure are exactly alike; and in most microstructures, no two particles/grains in a field of view are exactly alike. It follows that microstructure characterization must be couched in statistical terms. Further, microstructural features have complex morphologies, their locations and orientations are often nonuniform, and spatial clustering and correlations frequently exist. Accordingly, quantitative metallographic techniques must be free of any restrictive geometric assumptions so that they can be successfully applied to any arbitrary microstructure. Despite these complexities, quantitative metallographic procedures are straightforward to use in practice. Numerous geometric attributes of three-dimensional microstructures can be estimated in an unbiased manner from the counting measurements that can be performed on representative metallographic planes, without involving any assumptions whatsoever.

Modern quantitative metallographic/stereological methods typically involve statistical sampling of 3-D microstructure using lower dimensional geometric test probes such as planes, lines, and points. In many cases, the basic measurements simply consist of counting the number of times the test probe intersects (or hits) the microstructural features of interest; the average value (or more precisely, statistical expected value) of such “hits” is uniquely related to specific geometric attributes of the 3-D microstructure through simple stereological equations. The stereological techniques have rigorous theoretical foundations that are anchored in the disciplines of stochastic geometry (Ref 1), integral geometry and global analysis (Ref 2), and differential geometry (Ref 3). The stereological methods are completely general, and therefore they are also applicable to microstructures encountered in many other disciplines, including biology (Ref 4) and mineralogy (Ref 5).

The basic principles of classical quantitative metallography are covered in numerous books (Ref 6–8). Nevertheless, during the past decade or so, there has been substantial progress in the development of new design-based stereological techniques for efficient characterization of anisotropic microstructures (Ref 9–18) and new techniques for unbiased estimation of number density of microstructural features (Ref 19–21). Further, advances in digital image processing techniques (Ref 22–28), new microscopy techniques (Ref 29–31), and availability of powerful digital image analysis systems have opened up a whole new era of quantitative metallography dealing with new efficient techniques for reconstruction of 3-D microstructure from serial sections (Ref 32–35) and new techniques for characterization parameters such as microstructural spatial correlations and clustering (Ref 12, 22, 23, 35–37), coordination number distributions (Ref 35), and bivariate and trivariate size-shape-orientation distributions of particles/inclusions in 3-D microstructures (Ref 38, 39). There has also been a steady rise in the practical applications of quantitative metallography during the recent years (Ref 40–60).

The geometric attributes of microstructural features can be divided into the following categories:

- **Numerical extents of microstructural features** (how much?)
- **Number density of microstructural features** (how many?)
- **Derived microstructural properties** (grain size, mean free path, etc.)
- **Feature specific size, shape, and orientation distributions**
- **Descriptors of microstructural spatial clustering and correlations**

The classical methods as well as new design-based quantitative metallographic techniques for the estimation of the above categories of microstructural attributes are presented in this article; the emphasis is on the practical aspects of the measurement techniques and applications. The next section of this article describes the quantitative metallographic procedures for estimation of the numerical extents (amounts) of the fea-
tures in microstructure, and that is followed by the techniques for estimation of number density, derived properties, and particle size distributions.

Numerical Extents of Microstructural Features (How Much?)

Numerical extent specifies total “amount” of microstructural features of interest per unit volume of microstructure. Volume fraction (or volume percentage) is the numerical extent of the amount of a phase (or constituent) in a unit volume of 3-D microstructure. On the other hand, total surface area per unit volume characterizes the numerical extent of two-dimensional internal surfaces/interfaces. Similarly, total length per unit microstructural volume (or so-called length density) represents the amount of one-dimensional lineal features of interest in a 3-D microstructure. These first-order microstructural parameters are of central importance in materials science as they influence numerous material properties. The classical quantitative metallographic techniques permit efficient estimation of volume fraction, total surface area per unit volume, and total length of lineal features of interest per unit volume in any isotropic uniform random 3-D microstructure from the counting measurements that can be performed in 2-D metallographic sections/projected images (Ref 6–8, 61). Such measurements have been used in numerous experimental studies on processing-microstructure-properties relationships (Ref 27, 30–42, 44, 46, 48, 51–54). Recent developments in design-based stereology enable efficient estimation of total surface area per unit volume and total length per unit volume in the anisotropic microstructures as well (Ref 9–18). These design-based stereological measurements have also been used in several recent experimental studies (Ref 11, 43, 45, 55–58, 62–69). The quantitative metallographic methods for estimation of volume fraction, total surface area per unit volume, and the total length of per unit volume are described in the following sections.

Volume Fraction

Volume fraction is an important measure of the relative amount of a phase in a microstructure. It is equal to the sum of the volumes of the regions of a phase of interest in a material specimen divided by the volume of the specimen. Therefore, the volume fraction of a phase is the fraction of the 3-D microstructural space occupied by that phase. Volume fraction is denoted by the symbol, \(V_p \), where the subscript \(V \) signifies the normalization by the specimen volume. Obviously, the volume fraction of a phase must always be in the range \(0 \leq V_p \leq 1 \). Further, the sum of the volume fractions of all the phases in a microstructure must be equal to one. Volume fraction is often represented in terms of volume percentage, which is simply equal to volume fraction multiplied by 100.

The volume fraction of a phase in a microstructure is governed by the chemistry and processing history of the material. Numerous material properties depend on volume fractions of different phases in microstructure (Ref 40, 42, 46, 47–49, 52, 55). For example, the tendency of delayed cracking of quenched steel depends on the relative amount of retained austenite, the volume fraction of porosity in alumina controls its optical properties, and the strength of a fiber composite depends on the relative amounts of the fibers and the matrix. Accordingly, volume fraction is the most frequently measured microstructural attribute.

Volume fraction of a phase in any arbitrary 3-D microstructure can be estimated from the measurements performed in the 2-D metallographic sections without involving any assumptions concerning the shapes, sizes, orientations, or spatial randomness of the features of interest. Interestingly, as volume fraction is a dimensionless microstructural parameter, it is not necessary to know the microscope (or micrograph) magnification for its estimation. Volume fraction can be estimated from the measurements performed in the metallographic planes either by using the areal analysis method, or by using the point counting method. These techniques are described in the following paragraphs.

Areal Analysis. In 1848, French geologist Delesse developed the areal analysis technique for estimation of volume fraction (Ref 6). The areal analysis involves the measurement of the fraction of the area of representative metallographic planes \(A_A \) occupied by the phase of interest. The population average value (or more precisely, “expected value”) \(\langle A_A \rangle \) of the area fraction \(A_A \) is equal to the volume fraction \(V_V \) of that phase in the 3-D microstructure (Ref 4–8):

\[
V_V = \langle A_A \rangle \quad (Eq 1)
\]

The area fraction of the phase of interest \(A_A \) can be measured in the microstructural fields observed in a microscope, or from micrographs. Obviously, there are statistical variations in the local area fraction \(A_A \) measured in different microstructural fields. Therefore, it is essential to perform the measurements on numerous microstructural fields to obtain a representative average value of the area fraction. Areal analysis is a convenient method for estimation of volume fraction using digital image analysis. Once a gray-scale microstructural image (Fig. 1a) is converted into its binary image (Fig. 1b), the local area fraction of the phase of interest is simply equal to the number of pixels in the phase of interest divided by the total number of pixels in the measurement frame. Modern image analyzers can be interfaced with automatic specimen movement stage and autofocus modules of the microscope to automatically scan large number (~100 or more) of microstructural fields at certain fixed distance intervals and perform area fraction measurements in such microstructural fields automatically to yield a precise average value of the volume fraction. Nonetheless, in some microstructures, it is difficult to obtain a representative binary image from gray scale microstructural image (for example, microstructure in Fig. 2a). In such cases, digital image analysis is not useful, and one must resort to manual measurements. Areal analysis is not an efficient technique for estimation of volume fraction if manual measurements are required. In such cases, volume fraction can be efficiently estimated by using the point counting method discussed next.

Point Counting. In this method, a set of test points is overlaid on a microstructural field, and the number of test points contained in the phase of interest is counted. The fraction of test points in the phase of interest \(P_P \) is calculated by dividing the number of test points in phase of interest by the total number of test points. The population average value of this point fraction \(\langle P_P \rangle \) is precisely equal to the volume fraction of the phase of interest (Ref 4–8):

\[
V_V = \langle P_P \rangle \quad (Eq 2)
\]

The point counting can be performed by using a grid of regular array of test points, or by using

![Fig. 1 Areal analysis.](image-url)
randomly distributed test points. The procedure is called “systematic” point counting, when a regular array of points is used, and it is called “random” point counting when random test points are used. The systematic point counting is easier to perform in practice, and it is more efficient than the random point counting. Figure 2(b) illustrates the systematic point counting procedure using an array of test points. The efficiency of systematic point counting can be further increased by placing the test point grid at regular intervals in the metallographic plane rather than at independent random locations, and sampling multiple planes (if necessary) at different locations at fixed distance intervals in the specimen of interest. Figure 3 illustrates such a multilevel systematic sampling scheme, where all the regions of the specimen get equal “weightage.” Such systematic sampling procedure is superior to the independent random sampling for all the quantitative microstructural measurements (Ref 6, 7, 16, 70–74). Volume fraction measurements are extremely useful for characterizing the effects of process parameters on microstructure as well as to correlate the effects of relative amounts of different phases on the properties and performance of materials. For example, Figure 4 illustrates the effect of hot-rolling temperature on the volume fraction of recrystallized regions in a set of specimens of 7050 wrought aluminum alloy, where the recrystallized volume fraction was measured manually using the systematic point counting method (Ref 55).

Several stereologists have carried out rigorous statistical analyses of the bias, efficiency, and precision of different measurement procedures for volume fraction estimation. Their conclusions are (Ref 6, 7, 70–72):

- Both the areal analysis and point counting are statistically unbiased and general methods. These techniques do not involve any assumptions concerning sizes and/or shapes of the features of the phase of interest.
- The angular orientations of the regions of the phase of interest need not be random; the techniques are equally applicable to anisotropic microstructures.
- It is not necessary to randomize the angular orientation of the sectioning plane, even for anisotropic microstructures. The measurements can be performed in a set of parallel planes of any one convenient angular orientation at systematic random locations in the 3-D microstructure.
- The regions of the phase of interest need not be randomly located in the sample; they may be at any arbitrary location, as long as the sampling is systematic random (or independent random) with respect to the phase of interest. Further, as this locational randomness of the sectioning plane is required only with respect to the phase of interest, if the regions of the phase of interest are randomly located in the microstructure, then measurements in a single sectioning plane (not necessarily randomly located or oriented) can yield a reliable estimate of \(V_v \).
- If the microstructure contains a gradient, then it is more efficient to perform the measurements on the metallographic planes that contain the gradient.
- For optimal efficiency and precision, the measurements should be performed at the lowest magnification where all the features of interest are clearly resolved. Any further increase in the magnification decreases the efficiency.
- For manual measurements, systematic point counting (Fig. 2 and 3) is the most efficient sampling procedure.

Estimation of volume fraction involves statistical sampling of microstructure, and consequently there is always a statistical sampling error associated with the estimated value of the volume fraction. Nevertheless, the sampling error can be kept as small as desired simply by performing the measurements on more microstructural fields in more metallographic planes. The nature of the statistical sampling error and its estimation are described in the next paragraph.

Estimation of Sampling Error. Consider the estimation of volume fraction using a grid of test points containing \(P_r \) number of points. Suppose this grid is placed at \(n \) different locations in the microstructure, and each time, the number of test points in the phase of interest is counted. Let \(P_1, P_2, \ldots, P_r, \ldots P_n \) represent these data, which essentially constitute a statistical sample of size \(n \). The estimated value of the population average point fraction \(\langle P_p \rangle \) with the associated confidence interval is given as:

\[
\langle P_p \rangle = \left[\frac{\sum P_r / \langle n \cdot P_T \rangle}{n} \right] \pm E_n
\]

(Eq 3)
Estimation of S_v involves statistical sampling of the 3-D microstructure by test lines. The number of intersections between the test lines and the surfaces of interest is counted. The population average value of the number of intersections between the test lines and the surfaces of interest per unit test line length I_1 is related to the total surface area per unit volume S_v through the stereological equation given by Smith and Guttman (Ref 61) and Saltykov (Ref 8):

$$S_v = 2(I_1 \lambda)$$ \hspace{1cm} (Eq 6)

Equation 6 is general: it is applicable to microstructural surfaces of any arbitrary geometry. I_1 has units of $(\mu m)^{-1}$ because it is the number of intersections per unit test line length. In practice, the test lines are placed in a metallographic plane to perform the intersection counting.

An alternate general and unbiased stereological relationship is available for estimation of S_v, which is particularly attractive when the measurements are performed using automatic digital image analysis. This method requires measurements of the total length of all the boundary traces observed per unit area of metallographic plane, L_v. It can be shown that (Ref 61):

$$S_v = \frac{4n}{\pi(L_v)}$$ \hspace{1cm} (Eq 7)

where (L_v) is the population average value of the total boundary length per unit area.

It is easier to program an image analyzer to measure the lengths of all the boundaries of interest in the measurement frame as compared to counting the number of intersections of test lines with the boundaries of interest. Some commercial image analyzers are not even equipped with the computer codes for automatic line intersection counting (i.e., I_1 measurements). Therefore, if automatic image analysis is to be used, Eq 7 is useful for estimation of S_v. Although, in principle, Eq 6 and 7 are applicable to isotropic as well as anisotropic microstructures, to maximize the efficiency and precision of the estimation procedure somewhat different sampling strategies are needed for practical applications of these stereological equations to isotropic and anisotropic microstructures.

Estimation of S_v in Isotropic Microstructures. In an isotropic microstructure, the microstructural surfaces have uniform random angular orientations. Consequently, the number of intersections between the test lines and the boundaries/surfaces of interest does not vary systematically with the angular orientation of the test lines. For example, in Fig. 6, on the average, horizontal, or vertical test lines (or lines having any other orientation) of the same length yield statistically similar number of intersections with the pore surfaces. Therefore, in an isotropic microstructure, it is not necessary to perform the intersection counts with test lines and/or metallographic planes of different angular orientations: the measurements on metallographic plane(s) of any one convenient angular orientation using test lines of any one convenient angular orientation can yield a reliable estimate of the population average value of the intersection count (I_1). An example of I_1 measurements in the isotropic microstructure of sintered NiAl and aluminum mixture containing porosity is given in Fig. 6. In such homogeneous isotropic microstructures, the measurements on about 50 systematic random microstructural fields in just one metallographic plane can yield a reliable estimate of S_v. Even when the measurements are performed manually, this does not take more than about 40 min. Thus, unbiased and precise stereological estimation of S_v in the isotropic microstructures is straightforward and efficient.

Estimation of S_v in Anisotropic Microstructures. In an anisotropic microstructure, the microstructural surfaces have preferred orientations. As a result, the intersection count I_1 systematically varies with the angular orientation of the test lines. Figure 7 shows an anisotropic microstructure depicting grain boundaries in a cold-rolled extra-low-carbon steel specimen. Clearly, in such a microstructure, on the average, a horizontal test line is expected to intersect significantly fewer grain boundaries as compared to a horizontal test line.
vertical test line of the same length. If I_L varies systematically with angular orientation of the test lines, it is essential to perform the intersection counts using test lines of several random angular orientations placed in numerous metallographic planes having random angular orientations to obtain an unbiased and precise estimate of the population average value $\langle h \rangle$, which makes the procedure very laborious. Further, in such an isotropic uniform random (IUR) sampling process, it is not known a priori on the test lines and test planes of how many different orientations the measurement need to be performed for a reliable estimate of S_V, because the answer depends on the morphological orientation distribution function of the surfaces of interest (which is usually unknown). During the recent years, a practical and efficient solution to this complex problem has been developed using design-based stereology and vertical section sampling technique (Ref 9) described below.

To begin the sampling process, choose a reference direction in the 3-D space. In the present context, this reference direction is called vertical axis or vertical direction (it has no relation whatsoever to the gravitational vertical). Any plane that contains the vertical axis is called a vertical plane (see Fig. 8 and 9). Baddeley, Gundersen, and Cruz Orive (Ref 9) have shown that the set of vertical planes belonging to any chosen vertical axis contains test lines of all possible angular orientations in the 3-D space. Therefore, for estimation of S_V, it is sufficient to perform the intersection counts using the test lines in any one set of vertical metallographic planes (i.e., there is no need to perform the measurements in the metallographic planes that are inclined with respect to the chosen vertical axis). Nonetheless, the frequency of the angular orientations of the lines in the vertical planes is not equal to that in the 3-D space, and therefore it is essential to correct for this bias, when the intersection counts are performed only in the vertical planes. Baddeley et al. (Ref 9) showed that this bias can be eliminated if the intersection counts are performed using cycloid shape test lines (see Fig. 10) that are oriented such that the cycloid minor axis is parallel to the vertical axis. In such a case, the following equation (Ref 9) can be used for an unbiased estimation of S_V:

$$S_V = 2\langle C_L \rangle$$ \hspace{1cm} (Eq 8)

where $\langle C_L \rangle$ is the population average value of the number of intersections between the cycloid shape test lines and the microstructural surfaces of interest per unit test line length, when the cycloids are placed in the vertical sections with their minor axis parallel to the vertical axis. Figure 11 illustrates such intersection counting using cycloid test lines.

Numerous materials processes lead to the microstructural anisotropy that has a natural rotational symmetry axis. For example, the morphological anisotropy of the grain boundaries in a cold-rolled metal is not rotationally symmetric with respect to the rolling direction (or with respect to any other direction). In such cases, Eq 8 is still applicable, but the measurements must be performed on vertical planes of numerous different orientations. Further, it is not known a

![Fig. 7 Anisotropic microstructure of a specimen of cold rolled extra-low-carbon steel, where the number of intersections between a test line and grain boundaries strongly depends on the angular orientation of the test line. For example, in this microstructure, a vertical test line is expected to intersect a significantly higher number of grain boundaries than a horizontal test line of the same length.](image)

![Fig. 8 Concept of vertical direction/axis (VD) and vertical planes (VP). HP is horizontal plane. Source: Ref 9](image)

![Fig. 9 Vertical planes. (a) At different locations in the specimen. (b) At the same location in the specimen](image)

![Fig. 10 Cycloid shape test lines. (a) Cycloid curve oriented with its minor axis (AB) parallel to the Y-axis (vertical axis). The length of the cycloid curve is equal to two times the length of its minor axis (AB). Parametric equation of cycloid is $Y = 1 - \cos \theta$ and $X = \theta - \sin \theta$. The parameter θ takes values from 0 to π. (b) A measurement grid containing nine cycloids. For the surface area measurements the grid must be oriented so that the arrow is parallel to the vertical axis.](image)
priori on vertical planes of how many different orientations the measurement need to be performed for a reliable estimation of \(S_V \), because the answer depends on the morphological orientation distribution function of the surfaces of interest (which is usually unknown). This problem has been analyzed by Gokhale and Drury (Ref 10) using theoretical analysis and computer simulations. It has been shown that the measurements on vertical planes of at the most three orientations are always sufficient for an estimation of \(S_V \) with a bias of less than 5% in a microstructure of any arbitrary anisotropy, if the sampling and the intersection counts are performed using a trisector probe (which consists of three vertical planes) using the following procedure (Ref 10):

1. The vertical axis should be chosen such that it is not parallel to most of the surfaces of interest. For example, in a cold-rolled plate or sheet, the thickness direction can serve as such vertical axis.
2. The first vertical plane (obviously, it must contain the chosen vertical axis) is chosen in a completely arbitrary fashion.
3. The second and the third vertical planes of the trisector are chosen such that they are at an angle of 120° to the first vertical plane and to one another. This yields a set of three vertical planes that are mutually at angle of 120° and contain a common direction that is the chosen vertical axis (see Fig. 12). The three planes of the trisector need not be at the same location in microstructure, and to optimize the efficiency and to minimize the bias, they should not be at the same location.
4. On each vertical plane of the trisector, place a set of cycloid shape test lines and sample the plane in a systematic manner. The cycloid minor axis must be parallel to the vertical axis.
5. Count the number of intersections between the cycloid test lines and the microstructural surfaces of interest, and calculate the average number of intersections per unit test line length (see Fig. 11 for an illustration of the counting procedure).

The total surface area per unit volume \(S_V \) can be then estimated using a stereological equation (Ref 10):

\[
S_V = 2(T_2)
\]

(Eq 9)

where \((T_2)\) is the population average value of the number of intersections of the microstructural surfaces with the cycloid shape test lines in the trisector planes per unit test line length. Note that Eq 6, 8, and 9 are formally identical: they differ only in the sampling procedures used for the intersection counting. The trisector technique has been used in several recent studies for estimation of \(S_V \) in anisotropic microstructures (Ref 10, 11, 17, 55, 56, 62–64).

Figure 13 shows a plot of the total surface area of the grain boundaries per unit volume estimated using the trisector technique versus the amount of cold work in a set of specimens of cold-rolled extra-low-carbon steel (Ref 11). In these specimens, the initial microstructure before the cold rolling was the same. The data show that the total grain boundary area increases with amount of cold work. Therefore, the plastic deformation creates new grain boundary surfaces.

Estimation of Total Projected Surface Area per Unit Volume

In the microstructure-properties correlation studies involving anisotropic microstructures, another microstructural parameter of interest is the total projected surface area of the microstructural surfaces of interest on a plane of specific angular orientation \((\theta, \phi)\) per unit volume, \(A_V(\theta, \phi)\). This parameter can also be estimated in a straightforward manner. Let \(\langle I_2(\theta, \phi)\rangle\) be the average number of intersections between straight

![Fig. 11](image1.png)

Fig. 11 A set of nine cycloid test lines superimposed on the microstructure observed in a vertical metallographic plane of a specimen of cold rolled extra-low-carbon steel (Ref 11). In this case, the chosen vertical axis (Y-axis) is the direction perpendicular to the faces of the rolled plate. The number of intersections between these nine test lines and the anisotropic grain boundaries is equal to 36. The effective length of cycloid minor axis was 138 \(\mu \)m. The length of a cycloid arc is two times the length of its minor axis. Therefore, the number of intersections per unit test line length is equal to \([36]/[9 \times (2 \times 138)] = 0.0145\) per \(\mu \)m.

![Fig. 12](image2.png)

Fig. 12 Use of a trisector probe. (a) The trisector consists of three vertical planes that are mutually at angle of 120° where the vertical axis is not parallel to most of the surfaces of interest. (b) In a rolled metal plate, most of the grain boundaries are parallel to the rolling directions, and therefore the vertical axis of the trisector can be the direction perpendicular to the faces of the plate. For the trisector sampling, the angular orientation \(\theta^0\) of the first vertical planes is chosen at random. The orientations of the remaining two planes are obtained by adding 120° and 240°, respectively, to the first one. The three planes of the trisector need not be at the same location. Source: Ref 10, 64

![Fig. 13](image3.png)

Fig. 13 Plot of total surface area of the grain boundaries per unit volume measured using the trisector technique versus the amount of cold work in a set of specimens of cold-rolled extra-low-carbon steel. Source: Ref 11
test lines of orientation \((0, \phi)\) and the microstructural surfaces per unit test line length. It can be shown that \(\text{(Ref 6–8, 61)}\):

\[
A_V(0, \phi) = \langle I(0, \phi) \rangle
\]

(Eq 10)

In other words, the intersection counts using straight test line of specific angular orientation essentially represent the total projected area of the surfaces on a plane perpendicular to the direction of the test lines. Figure 14 shows a plot of plane strain fracture toughness \(K_t\) versus the total projected area of the high angle grain boundaries between recrystallized and unrecrystallized regions on the plane perpendicular to the loading direction, in a set of specimens of partially recrystallized hot-rolled 7050 aluminum alloy having different degrees of recrystallization and orientations \(\text{(Ref 55)}\). The \(K_t\) decreases with the increase in the projected area of the boundaries indicating that these boundaries adversely affect the fracture toughness of the alloy.

Estimation of Sampling Error. To estimate the sampling error in the total surface area per unit volume \(S_V\), let \(L_V\) be the total effective length of the set of test lines used for the intersection counting. Suppose that these test lines are placed in \(n\) number of fields of view, and the intersections between the test lines and the surfaces of interest are counted. Let \(I_1, I_2, \ldots, I_n\) represent these intersection count data, which essentially constitute a statistical sample of size \(n\). In this sample, the average number of intersections \(\langle I \rangle\), that is, the sample average, is given as:

\[
\langle I \rangle = \Sigma I/n
\]

(Eq 11)

If the sample size is sufficiently large (for most microstructures, \(n > 50\)), then the following working equation gives the confidence interval in the \(S_V\) estimated from the experimental intersection counts data:

\[
E_a = 4[\Sigma(\langle I \rangle - I)^2/n(n - 1)(\Sigma I^2)]^{1/2}
\]

(Eq 12a)

\[
S_V = [\langle I \rangle/L_V] \pm E_a
\]

(Eq 12b)

Equation 12(b) implies that there is 95% probability that the true value of the total surface area per unit volume \(S_V\) is in the interval \([\langle I \rangle/L_V] \pm E_a\). Note that the sampling error \(E_a\) strongly depends on the sample size \(n\), and therefore it can be kept as small as desired by simply increasing the sample size \(n\), that is, number of microstructural fields on which the measurements are performed. If the sample size is not sufficiently large (i.e., \(n < 50\)) then other statistical procedures must be used to compute the confidence interval \(\text{(Ref 75)}\). Note that Eq 12(a) and (b) are applicable for calculation of confidence interval when the intersection counts are performed by using straight test lines, or by using cycloid shape test lines.

Total Length per Unit Volume

One-dimensional lineal features are usually present in material microstructures. Dislocation lines, grain edges, triple lines, and necks in the sintered microstructures are examples of the microstructural features that are truly one-dimensional. Further, the features such as needle-shaped precipitates, whiskers in composites, slag stringers, and so forth can be modeled as one-dimensional lineal features. An important attribute of the lineal microstructural features is their total length per unit volume, or so-called length density. Numerous material properties depend on the length density of the lineal features present in microstructure. For example, almost all the plastic-deformation-related mechanical properties of crystalline materials depend on the distribution density. The total line length per unit volume is denoted by the symbol \(L_V\). It is equal to the sum of the lengths of the lineal features of interest in a specimen divided by the specimen volume. In the symbol \(L_V\), the subscript \(V\) signifies the normalization with the specimen volume. The units of \(L_V\) are \(\mu m/m^3\) or \(\mu m^{-2}\). Since \(L_V\) is not dimensionless, it is necessary to know the microscope magnification for its estimation. The length density can be estimated from the measurements performed in the metallographic planes, or in the projected images of a 3-D microstructure. These two techniques are described in the paragraphs that follow.

Estimation of \(L_V\) from Measurements Performed in Metallographic Planes. The 2-D metallographic planes serve as geometric probes for the estimation of \(L_V\). The intersections of lineal features with a metallographic plane result in “points.” These points can be observed in a metallographic plane. For example, the triple junctions in Fig. 15(a) are the intersections of the grain edges with the metallographic plane. One can count the number of such points per unit area of the metallographic plane, \(Q_A\). The population average value of number of points per unit area \(\langle Q_A \rangle\) is related to the length density of the lineal features as follows \(\text{(Ref 8, 61)}\):

\[
L_V = 2\langle Q_A \rangle
\]

(Eq 13)

Note that \(\langle Q_A \rangle\) has units of \(\mu m^{-2}\). The triple-point counting procedure is illustrated in Fig. 15. For isotropic microstructures, it is not necessary to randomize the angular orientation of the metallographic plane. In such a case, the measurements in the metallographic planes of any one convenient orientation can give a reliable estimate of \(L_V\). If the microstructure is isotropic and homogeneous (i.e., no gradients), then the measurements performed in a single metallographic plane of any one angular orientation and at any convenient location in the specimen should yield a reliable estimate of \(L_V\). For most homogeneous isotropic material microstructures, measurements on about 50 to 60 uniformly distributed microstructural fields can yield a reliable estimate of \(L_V\).

In an anisotropic microstructure, \(Q_A\) varies systematically with the angular orientation of the metallographic plane. Consequently, it is essential to perform the measurements on numerous metallographic planes of different random angular orientations to obtain a reliable estimate of the population average \(\langle Q_A \rangle\). At present, no stereological technique is available for efficient estimation of the length density in an anisotropic microstructure from the measurements performed on a few metallographic planes. However, an efficient stereotechnical technique for the estimation of the length density in any anisotropic microstructure is available if the measurements can be performed on the projected images of the microstructure. This alternate method is described below.

Estimation of \(L_V\) from Measurements Performed in Projected Images. For numerous

Fig. 14 Plot of plane strain fracture toughness \(K_t\) versus the total projected area of the high-angle grain boundaries between recrystallized and unrecrystallized regions per unit volume \(A_V\) on the plane perpendicular to the loading direction in a set of specimens of partially recrystallized hot-rolled 7050 aluminum alloy having different degrees of recrystallization and orientations. Source: Ref 55
microstructures, transmission microscopy (for example, transmission electron microscopy, radiography, and so forth) is the microscopy technique of choice. In such cases, efficient estimation of the length density of lineal features from the projected microstructural images is of particular interest. This design-based stereological method involves vertical slices sampling procedure developed by Gokhale (Ref 13–15):

1. Choose a convenient reference direction in the 3-D space. This reference direction is called vertical axis.
2. A slice is a microstructural volume contained between two parallel planes that are separated by distance, \(\Delta \), which is the thickness of the slice. A vertical slice is a slice whose parallel faces contain the chosen vertical axis (see Fig. 16). Uniformly sample the 3-D microstructure with vertical slices.
3. Observe the projected images of the lineal features contained in the vertical slices (Fig. 17).
4. Place cycloid shape test lines on the projected images of the vertical slices such that the cycloid minor axis is perpendicular to the vertical axis. Such test lines essentially represent the projections of hypothetical cycloidal test surfaces in the vertical slices as illustrated in Fig. 17.
5. Count the number of intersections between the cycloid shape test lines and the projected images of the lineal features of interest, and calculate the number of intersections per unit length (see Fig. 18).

The population average value of this quantity \(\langle Q \rangle \) is related to the length density \(L_V \) through the stereological equation (Ref 13–15):

\[
L_V = 2 \langle Q \rangle / \Delta \quad \text{(Eq 14)}
\]

This result has been utilized to estimate the length density of anisotropic lineal biological features in numerous biological tissues (Ref 65–68); the technique is equally applicable for the estimation of dislocation density from transmission electron microscopy (TEM) images.

If the anisotropy of the lineal features of interest has a natural rotational symmetry axis, then the projected images of all the vertical slices containing the symmetry axis present statistically similar projected microstructures. Therefore, if the symmetry axis is chosen as the vertical axis, then all the corresponding vertical slices yield statistically similar intersection counts. Consequently, in such anisotropic microstructures, \(L_V \) can be estimated by performing intersection counts on the projected images of vertical slices of just one orientation containing the symmetry axis (vertical axis). If the anisotropy of the lineal features does not have a natural symmetry axis, then sampling similar to the trisection consisting of three vertical slices mutually at an angle of 120° yields a reliable estimate of \(L_V \), if the vertical axis is not parallel to most of the lineal features (Ref 69).

Estimation of Sampling Error. For computation of the sampling error in the estimated total length per unit volume \(L_V \) from the measurements performed in the metallographic planes, let \(A_r \) be the total effective area of the measurement frame used for counting. Suppose this measurement frame is placed in \(n \) number of fields of view, and the intersections between the frame and the lineal features of interest are counted. Let \(Q_1, Q_2, \ldots, Q_i, \ldots, Q_n \) represent these data, which essentially constitute a statistical sample of size \(n \). In this sample, the average number of intersections \(\langle Q \rangle \); that is, the sample average, is given as:

\[
\langle Q \rangle = \Sigma Q_i/n \quad \text{(Eq 15)}
\]

If the sample size is sufficiently large (for most microstructures, \(n > 50 \)) then the \(L_V \) estimated...
from this sample and the associated confidence interval are given as:

\[L_\nu = \frac{2[Q/A_f]}{\nu} \pm E_\nu \]
\[E_\nu = 4\{\Sigma(Q - Q_i)^2/(n - 1)[A_f]\}^{1/2} \]

Equation 16 states that there is 95% probability that the true value of the total length per unit volume is within the interval given by the right-hand side of the equation. As mentioned earlier, other statistical procedures need to be used for small samples (Ref 75).

Number Density of Microstructural Features (How Many?)

Number density of a given type of microstructural features (for example, voids, particles, grains) is equal to the average value of the number of such features per unit microstructural volume. This is an important microstructural parameter of interest in processing-microstructure-properties studies. Unfortunately, in general, the number density of the features in a 3-D microstructure cannot be estimated from any measurements performed on independent 2-D metallographic sections, unless the particles/grains have a known simple convex shape (Ref 2, 6–8). Consequently, in the past, reliable estimation of number density was problematic. In 1984, Sterio (Ref 19) showed that the number density of the features in a 3-D microstructure can be estimated using a test probe (called disector) consisting of two parallel metallographic planes that are a small distance apart (i.e., two closely spaced serial sections). In 2000 (Ref 20), a combination of this sampling principle and modern image analysis techniques led to an efficient stereological method for unbiased and efficient estimation of the number density from the measurements performed on the digital images of two closely spaced large-area high-resolution montage serial sections, called large-area disector (LAD). To understand these 3-D techniques, first an unbiased method for counting particles/grains in a 2-D metallographic plane is presented, and then the estimation of the number density in the 3-D microstructures is described.

Estimation of Number of Particles/Grains per Unit Area in a Metallographic Plane. In any microscope, a limited area of the metallographic plane is observed in one field of view. Therefore, there are usually some features that cross the boundaries of the field of view (or measurement frame), which can lead to a counting bias due to an “edge effect.” This is because such partly-in-partly-out features raise the question whether to include them in the number count, to exclude them, or to count them as one-half. Gundersen (Ref 76) has shown that none of these is a statistically unbiased and correct procedure. The correct statistical procedure to account for the edge effect requires the use of an unbiased counting frame (Ref 76). An unbiased counting frame consists of a square measurement frame of area \(A_f \) that has two forbidden edges (solid lines in Fig. 19), and two permissible edges (dashed lines in Fig. 19). The counting procedure is:

1. Count all the features that are completely contained in the measurement frame and therefore do not intersect any edges of the counting frame.
2. Do not count any feature that intersects a forbidden edge.
3. Count all the features that intersect the permissible edge(s), if they do not also intersect any forbidden edge.
4. The average value of the number of features counted in this manner divided by the area of the measurement frame \(A_f \) is an unbiased estimator of the two-dimensional number density of the features of interest in the metallographic plane.

This procedure for unbiased counting of the number of features in a metallographic section is shown in Fig. 19.

Disector Principle for Unbiased Estimation of Number Density in 3-D Microstructure. Sterio (Ref 19) has developed a three-dimensional stereological sampling probe, disector, for an unbiased estimation of the number density of the features of interest in any three-dimensional microstructure. The disector consists of two parallel metallographic planes (i.e., two serial sections) that are separated by a known distance \(t \). The distance \(t \) between the disector planes must be less than one-fifth of the average size of the features of interest. Observations on both the planes of the disector are required for the estimation of the number density. An unbiased counting frame of area \(A_f \) is placed in the first disector plane to sample the features of interest using the counting procedure described in the previous subsection and shown in Fig. 19, and these features are followed in the second plane. Out of the features sampled by the unbiased counting frame in the first disector plane, those that are not present in the second plane, \(Q^- \), are counted. The average value of the quantity \([Q^+ + Q^-]/2A_f \) is an unbiased estimator of number of features per unit volume (i.e., number density) \(N_V \) in the three-dimensional microstructure. Alternatively, an unbiased counting frame can be placed in the second metallographic plane of the disector, and the features sampled by the unbiased frame that are not present in the first plane, \(Q^- \), may be counted in exactly the same way. In practice, it is efficient to count both \(Q^+ \) and \(Q^- \) and use the following equation for an unbiased estimation of the number density, \(N_V \) (Ref 19):

\[N_V = \frac{[Q^+ + Q^-]/2A_f}{A_f} \]

Fig. 19 Microstructure of a ceramic-matrix composite containing unidirectional continuous nicalon (SiC) fibers in NAS glass ceramic matrix observed in a transverse metallographic plane. An unbiased square counting frame consisting of two forbidden edges (solid line) and two permissible edges (dashed lines) is overlaid on the microstructure. There are 11 fibers completely inside the counting frame; there are nine fibers that intersect one or both forbidden edges (therefore, not to be included in the number count); and there are five fibers that intersect one or both permissible edges but do not intersect any forbidden edge (therefore, to be included in the number count). Thus, effectively there are 16 fibers in the measurement frame of area 3953 \(\mu m^2 \). Thus, the local value of the number of fiber per unit area is equal to 4.05 \(\times 10^{-3} \) per \(\mu m^2 \).

\[
\text{Vertical axis} \\
50 \mu m
\]

Fig. 18 Four cycloid shape test lines superimposed on the projected image of a vertical slice containing lineal features. Note that, for the length estimation, the cycloid minor axis must be perpendicular to the vertical axis. In this example, there are a total of six intersections between the four cycloid test lines and the projected images of the lineal features. For the cycloids having minor axis equal to 20 \(\mu m \), the length of each test line would be 40 \(\mu m \), and \(\ell_1 \) would be equal to \(6 \times 40 = 0.0375 \) per \(\mu m^2 \).
actual stereological counting; most of the effort (about 90%) goes into the specimen preparation steps such as physical sectioning, polishing, etching of disector planes, identification of the same microstructural region in the two sectioning planes, alignment of the images in the two planes, and measurement of thickness (i.e., distance between disector planes) of the material removed. After all the tedious metallographic work, very small numbers of particle counts are obtained. The number density estimated from such a small statistical sample (although unbiased) has a large sampling error. Therefore, to obtain a reasonably precise estimate of the number density and to decrease the sampling error, it is necessary to repeat the procedure on (typically) 25 to 50 different disectors, which requires physical sectioning of a large number of metallographic planes and involves tedious metallographic work. A practical solution to this problem has been recently developed (Ref 20) that utilizes a combination of the disector principle and modern digital image processing techniques; the resulting sampling technique, called large-area disector (LAD), is described below.

Large Area Disector (LAD) for Efficient and Unbiased Estimation of Number Density.

The major limitation of the conventional disector technique is that it is inefficient for the estimation of the number density in opaque material microstructures due to low \(Q \) counts and \(Q^* \) counts usually obtained from a disector whose area is equal to one field of view. The counts can be increased by increasing the absolute area of the field of view selected in the first sectioning plane simply by observing the structure at a much lower magnification. This is often not acceptable because the loss of resolution can lead to significant measurement errors. In almost all microscopy techniques, to obtain a higher resolution the structure must be observed at a higher magnification, and that decreases the area of the observed microstructural field of view. Therefore, it is not possible to observe a large area of a metallographic plane at a high resolution using the conventional microscopy techniques. However, it is possible to obtain a large microstructural area at a high resolution by creating a “seamless montage” of a very large number of contiguous microstructural fields grabbed at a high resolution and “stitched together” using the digital image analysis procedure given elsewhere (Ref 22, 23, 35). Using such a methodology, the number density can be efficiently estimated:

1. Identify a sufficiently large region in the first disector plane covering about 25 to 100 microstructural fields, and “tag” this region by placing sufficient number of deep microhardness indents around its four boundaries.
2. Create a seamless “montage” covering all the microstructural fields in this region of the first disector plane at sufficiently high resolution such that all the features of interest are clearly resolved, using the “montage” image analysis technique described in detail in Ref 22, 23, and 35. Figure 21 illustrates one such large-area-high-resolution montage.
3. Remove a small amount of material by polishing and identify the same region in the second disector plane by using the positions of the microhardness indents for reference.
4. Create the seamless montage of all the microstructural fields of the same region in the second disector plane, and align the two montages using the micro-hardness indents as the reference points (Ref 20). The two montages then constitute the LAD (see Fig. 22).
5. Measure the disector thickness \(t \) by measuring the decrease in the sizes of microhardness indents in the second disector plane (Fig. 23).
6. Place a large unbiased counting frame in the first LAD plane and note the features that can be effectively assigned to that frame using the unbiased counting procedure given by Sterio (Ref 19).
7. Out of the features sampled by the first plane of the LAD, identify the number of features that are absent in the second plane (i.e., \(Q^* \), or vice versa (i.e., \(Q \)), as illustrated in Fig. 20, and estimate the number density using Eq 18.

In the uniform random microstructures (i.e., no gradients), a reliable and precise estimation of the three-dimensional number density of the particles (or any other features of interest) can be made by systematically sampling with three LADs at three different systematic random locations (Ref 20). The LAD sampling has been successfully used to estimate the 3-D number density and representation of global microstructural geometry.
density of tungsten grains in a liquid phase sintered W-Ni-Fe alloy processed in normal gravity and microgravity (Ref 20) and the 3-D particle cracking damage in some wrought aluminum alloys as a function of strain under uniaxial tension and compression (Ref 43, 58).

Derived Microstructural Properties

Derived microstructural properties such as grain size, mean free path, and mean particle volume often appear as parameters in the models and theories of materials behavior. These attributes can be computed from experimentally measured numerical extents and number densities of the microstructural features of interest, and therefore they are not independent microstructural characteristics. Nonetheless, they are extremely useful for understanding microstructure-properties interrelationships, and consequently these microstructural parameters are used in many studies (Ref 11, 43, 47, 49, 52, 58–60 77–80). Important derived microstructural properties are described in the paragraphs that follow.

Mean Free Path. The average uninterrupted surface-to-surface distance between precipitates (or regions of any phase of interest) through the matrix in a three-dimensional microstructure is called mean free path (see Fig. 24). The mean free path is denoted by the symbol, \(\lambda \). Numerous mechanical properties (for example, yield stress) of microstructures containing a population of precipitates depend significantly on the mean free path of the precipitates. The mean free path \(\lambda \) is related to the volume fraction of precipitates, \(V_p \), and their total surface area per unit volume, \(S_v \), through (Ref 81, 82):

\[
\lambda = 4(1 - V_p)/S_v \quad (Eq 19)
\]

Equation 19 is applicable to any arbitrary microstructure containing precipitates or particles or inclusions: it does not involve any assumptions. The microstructure need not be isotropic; and all the particles need not be of the same size or shape. The mean free path is also a measure of the length scale of a microstructure, and it has been used in numerous studies to correlate the microstructure to the material properties, as well as to monitor microstructural evolution processes. For example, this parameter has been utilized to monitor devitrification and microstructural coarsening in some aluminosilicate glasses (Ref 47).

Mean Free Path along a Specific Direction. In an isotropic microstructure, the average free path is the same along all the directions in the three-dimensional microstructural space. However, in an anisotropic microstructure, the average free path varies with the direction, and therefore, average free path along a specific direction (for example, rolling direction in a cold-rolled steel) may be of interest. The average free path through the matrix \(\lambda(\theta, \phi) \) along the direction having the orientation \((\theta, \phi)\) can be computed by using the general stereological equation:

\[
\lambda(\theta, \phi) = 2(1 - V_p)/\lambda(\theta, \phi) \quad (Eq 20)
\]

where \(I(\lambda, \phi) \) is the average number of intersections between the particle matrix interfaces and the straight test lines of orientation \((\theta, \phi)\) per unit length.

Grain Size. The mean intercept grain size in a single-phase polycrystalline material, \(G \), is equal to the average length of the chords formed by intersections of the grains with random straight test lines. The mean intercept grain size \(G \) can be computed using:

\[
G = 1/I(\lambda) \quad (Eq 21)
\]

where \(I(\lambda) \) is the average number of intersections between the test lines and the grain boundaries per unit test line length. Combining Eq 6 and 21 gives:

\[
G = 2S_v \quad (Eq 22)
\]

where \(S_v \) is the total area of the grain boundaries per unit volume of the material. The ASTM grain size number \(n \) can be calculated from \(G \) by using the following equation given in ASTM E 112 (Ref 83):

\[
n = [−6.644 \log G] − 3.288 \quad (Eq 23)
\]

where the mean intercept grain size \(G \) is expressed in the units of millimeters.

Combining Eq 22 and 23 gives:

\[
n = 6.644 \log S_v − 5.288 \quad (Eq 24)
\]

Fig. 22 Two planes of large-area disector (LAD), each of which is a seamless montage of large number of contiguous microstructural fields grabbed at a high resolution. A large area unbiased counting frame is overlaid on the first LAD plane. Source: Ref 20

Fig. 23 Use of microhardness indents to measure disector thickness. (a) Microhardness indents placed in the first large-area disector (LAD) plane become smaller in the second LAD plane (b). The change in the size of the indents can be used to compute the amount of material removed (i.e., LAD thickness \(t \)), and the locations of the indents can be used to align the two LAD planes. Source: Ref 20

Fig. 24 Microstructure of a cast Al-Si-Mg base alloy containing silicon particles in the interdendritic eutectic regions. The “free path” is an uninterrupted surface-to-surface distance between the particles through the matrix. The distances \(\lambda_1 \) to \(\lambda_5 \) are few examples of such free paths between the silicon particles. The mean free path is the average of obtained by averaging the free path lengths over all locations and all angular orientations.
Therefore, the mean intercept grain size G is inversely proportional to the total surface area of the grain boundaries per unit volume, S_V. Alternatively, it can be said that the mean intercept grain size G (and the ASTM grain size number calculated from it) reports the total surface area of the grain boundaries. Figure 25 illustrates the procedure for measurement of mean intercept grain size and ASTM grain size number. The grain size measurement procedures have also been discussed in detail elsewhere (Ref 11, 64, 77, 78, 83).

The mean intercept grain size in an anisotropic microstructure can be also estimated by using Eq 21 and 22. However, (l_D) must be obtained by averaging the intersection counts over all angular orientations of the test lines (and metallographic planes), which can be efficiently done by using the trisector methodology (Ref 10, 64) explained earlier. This methodology has been used to characterize the effects of cold rolling on the mean intercept grain size and ASTM grain size number in the microstructure of an extra-low-carbon steel (Ref 11).

ASTM E 112 gives an alternate method for the estimation of grain size number that requires measurement of average number density of grains observed in metallographic sections (i.e., counting the average number of grains per unit area). According to the standard, the ASTM grain size number n can be computed from such data using:

$$n = 1 + 3.3226 \log (N) \quad (Eq 25)$$

where (N) is the average number of grains per square inch area of metallographic plane observed at $100 \times$ magnification. It is important to recognize that the grain size number calculated from Eq 25 using the 2-D number density of grains and the one calculated from Eq 24 using the intersection counts in the same specimen may not necessarily be equal! This is because the mean intercept grain size (and consequently, the grain size number calculated from such data) is directly related to the total grain boundary area per unit volume S_V, whereas the average number density of grains in metallographic planes (and consequently grain size number calculated from such data, as in Eq 25) is related to the total length of grain edges per unit volume L_V (Ref 84), which is an independent microstructural parameter.

Surface Area Averaged Particle Size. In numerous microstructures, it is of interest to quantify a measure of average particle size. Caliper diameter d of a particle is the distance between two parallel planes tangent to the particle surface at different points. For a sphere, the caliper diameter is equal to the diameter of the sphere, and its value does not depend on the angular orientation of the tangent planes. However, for most of the other shapes (for example, ellipsoid), the caliper diameter varies with the tangent plane orientation. In the case of particles of convex shape, the “average particle size” can be defined as a suitable average value of the caliper diameter. One such measure of average size is the surface area averaged particle size, d_s, where the size is averaged over the surface areas of the particles. The surface area averaged particle size (caliper diameter), d_s, is given as (Ref 79):

$$d_s = 6V_s/S_v \quad (Eq 26)$$

where V_s is the volume fraction and S_v is the total surface area of the particles per unit volume. This equation is applicable to any collection of convex particles; not all the particles need be of the same shape or size, as long as all of them are convex. Further, the microstructure need not be isotropic. It is important to emphasize that, in general, d_s is not equal to the arithmetic average particle size.

Arithmetic Mean Caliper Diameter. The arithmetic mean caliper diameter (average size) of convex particles (or voids, inclusions, etc.) (d) can be calculated from experimentally measured three-dimensional number density of particles N_V and the mean value of the number of particles per unit area of sectioning plane (N_S) using the following equation given by DeHoff (Ref 7):

$$d = (N_S)/N_V \quad (Eq 27)$$

Note that in Eq 27, (N_S) must be obtained by averaging over the angular orientations of the sectioning planes in 3-D space if the particle has anisotropic (nonrandom) morphological orientations.

Arithmetic Mean Particle Volume. Another measure of average size is the mean particle volume v. If the number density of particles in the three-dimensional microstructure N_V and their volume fraction V_V are known, then the mean particle volume v can be computed by using:

$$v = V_v/N_v \quad (Eq 28)$$

Similarly, the arithmetic mean particle surface area can be computed from the total surface area per unit volume and number density of the particles.

Contiguity Parameter. In a microstructure containing particles or grains of one phase (e.g., α) in a matrix of another phase (e.g., β), there can be three types of interfaces, namely, $\alpha\beta$, $\beta\alpha$, and $\alpha\alpha$. The contiguity parameter of the particles, U, is given as (Ref 6, 80):

$$U = 2(S_{V,\alpha\beta}+2S_{V,\alpha\alpha}+(S_{V,\beta\alpha}) \quad (Eq 29)$$

where $(S_{V,\alpha\beta})$ is the total surface area of the $\alpha\beta$ interfaces per unit volume, and $(S_{V,\beta\alpha})$ is the total surface area of the $\beta\alpha$ interfaces per unit volume. Although, the contiguity parameter is useful for characterization of the extent of particle contiguity, it is not a measure of the topological connectivity of the particles in the 3-D microstructure. The contiguity parameter is frequently used to characterize microstructures of sintered materials (Ref 59, 60).

Dendrite Arm Spacing/Mean Intercepts. Dendrite arm spacing (DAS) is commonly used to characterize cast microstructural fineness. The DAS influences numerous mechanical properties such as strength, fracture toughness, and fatigue life of the cast components. The DAS can be measured in a metallographic section as the mean distance between the dendrite arms, if the dendrite arms are well defined in the observed microstructure (for example as in Fig. 26). Nonetheless, the mean dendrite arm spacing observed in a 2-D section is not necessarily equal to the true mean 3-D arm spacing. It is also important to recognize that a significant operator bias may be introduced in the selection of dendrite arms for the measurement of DAS, and not all cast microstructures containing eutectic constituents have well-defined dendrite arms (for example, see Fig. 27). There are two 3-D stereological parameters of cast microstructures that can be measured in 2-D sections, have a rigorous geometric interpretation, and can equally well characterize cast microstructural fineness: these parameters.
are mean linear intercept through dendrites, \(\Omega \), and mean intercept through the interdendritic eutectic, \(\rho \). These derived microstructural parameters can be computed:

\[
\Omega = 4[1 - (V_{c})/j(S_{v})] \tag{30}
\]

\[
\rho = 4(V_{c})/j(S_{v}) \tag{31}
\]

where \(V_{c} \) is the volume fraction of the interdendritic eutectic and \(S_{v} \) is the total surface area of between the eutectic and dendrites per unit volume. Note that \(\Omega \) and \(\rho \) are not equal to (or directly related to) the DAS, but these attributes provide an alternate measure of the cast microstructural fineness.

Feature-Specific Size, Shape, and Orientation Distributions

Microstructures often contain ensembles of precipitates/inclusions/voids/grains having different sizes, shapes, and morphological orientations. These distributions often evolve during material processing (and/or during service), and they affect material properties and performance. Until recently, most of the stereological techniques for estimation of microstructural distributions were limited to the estimation of the size distributions of randomly oriented geometrically similar particles/voids of simple shapes (for example, spheres, ellipsoids) that differ only in size (Ref 6–8, 12, 85–87, 93, 94). The unfolding technique developed for the estimation of the three-dimensional distribution of the gas pores measured from 100 microstructural fields such as Fig. 28(b) is shown in Table 2, and the three-dimensional size distribution of the gas pores (Ref 28) has been removed using image processing (Ref 28).

Table 1: Saltykov’s coefficients

<table>
<thead>
<tr>
<th>j</th>
<th>k</th>
<th>b(j, k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.0000</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.5774</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.4472</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0.3779</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.3333</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0.3015</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0.2773</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0.2582</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0.2425</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0.2294</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0.2182</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0.2085</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0.2000</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>0.1925</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0.1857</td>
</tr>
</tbody>
</table>

Source: Ref 6, 8
The shape factor C depends on the axial ratio of the ellipsoidal particles, and it can be calculated by using the formula given by DeHoff (Ref 88).

$$f(r, \alpha) = \frac{4N_C}{\pi N_v \sin \alpha}$$

$$\int_0^\infty \int_{\alpha}^{\pi/2} \cos^2 \theta \sin \theta g(R, \theta) d\theta dR$$

where $f(r, \alpha)$ is the joint bivariate frequency distribution function in a representative vertical sectioning plane such that $f(r, \alpha) d\alpha dr$ is equal to the fraction of the microcrack/plate section traces having the size in the range r to $(r + dr)$ and the orientation in the range α to $(\alpha + d\alpha)$. The function $f(r, \alpha)$ can be estimated from the experimental measurements of r and α on the microcrack traces observed in the vertical planes. The distribution $g(R, \theta)$ is the three-dimensional bivariate microcrack/plate size-orientation distribution function of interest, N_v is the number of microcracks/plates per unit volume in the three-dimensional microstructure, N_A is the average number of microcrack/plate section traces observed per unit area of vertical plane, and r_m is the size of the largest microcrack/plate section trace, which is equal to the true size R_m of the largest microcrack. In practice, $f(r, \alpha)$ is the measured quantity and $g(R, \theta)$ is to be estimated from these data. The numerical procedure for such estimation is described in detail elsewhere (Ref 45). This stereological technique has been recently applied for the estimation of the bivariate size-orientation distribution function of the microcracks observed in the intermetallic inclu-

Table 2 Two-dimensional section size distribution of gas pores in AM 60 magnesium alloy

| Size class (i) | Range of gas pore section diameters $(i| - 1A)$, μm | Number of gas pore sections per mm^2 (N_A) |
|-----------------|--|---|
| 1 | 0.9-9 | 39 |
| 2 | 9.18-18 | 31 |
| 3 | 18.27-18 | 18 |
| 4 | 27.36-36 | 7 |
| 5 | 36.45-45 | 3 |
| 6 | 45.54-54 | 1 |
| 7 | 54.63-63 | 1 |
| 8 | 63.72-72 | 1 |

Table 3 Three-dimensional size distribution of the gas pores computed from the section size distribution (Table 2) and Saltykov’s coefficients (Table 1) using Saltykov’s technique

| Size class (i) | Gas pore diameters $(i|A)$, μm | Number of gas pores in three-dimensions (N_A) per mm^2 |
|-----------------|-------------------------------------|---|
| 1 | 9 | 3715 |
| 2 | 18 | 1641 |
| 3 | 27 | 766 |
| 4 | 36 | 236 |
| 5 | 45 | 66 |
| 6 | 54 | 85 |
| 7 | 63 | 20 |
| 8 | 72 | 29 |

Source: Ref 6, 8
Spatial Clustering and Correlations

A location is associated with each feature in a microstructure. The statistical distribution of the relative locations of the microstructural features of interest represents their spatial arrangement in a microstructure. Spatial patterns, correlations, clustering, spatial affinity, short- and long-range interactions, pair correlations and higher-order correlations, microstructural gradients, segregations, and so forth, are important facets of the spatial arrangement of microstructured features. It is well known that these attributes of microstructural geometry affect numerous mechanical and physical properties of materials. Although theoretical statistics literature contains numerous quantitative descriptors that reflect various aspects of the spatial arrangement of ensembles of features in two- and three-dimensional space (Ref 1), flexible and general experimental techniques for estimation of such descriptors in the opaque material microstructures are still under development. Nevertheless, during the past decade or so, considerable progress has been made in the development of practical stereological techniques for the estimation of some important descriptors of spatial arrangement such as two-point correlation function (Ref 37), radial distribution function (Ref 22, 23, 36), nearest-neighbor distributions (Ref 22, 23, 36, 95), and coordination number distribution (Ref 35, 95). These recent developments are briefly described in the paragraphs that follow.

Two-Point Correlation Function. In a 3-D microstructure containing two phases, for example, particles (phase 1) and matrix (phase 2), the two-point correlation function \(P_{11}(r, \theta) \) is the probability that both the end-points of a randomly located straight line of length \(r \) and angular orientation \((\theta, \phi)\) are contained in phase 1 (i.e., particles). One can similarly define \(P_{22}(r, \theta, \phi) \), where both the end points are in phase 2 (matrix), and \(P_{12}(r, \theta, \phi) \), where one end of the line is in phase 1 and the other is in phase 2. Although for a two-phase microstructure there are four possible two-point correlation functions, only one of the four is independent. Therefore, in this contribution, only the two-point function \(P_{11}(r, \theta, \phi) \) is considered. If the microstructure has a symmetry axis, then it is most efficient to choose the symmetry axis as the \(Z \)-axis of the reference frame (vertical axis). In such a case, \(P_{11}(r, \theta, \phi) \) does not depend on \(\phi \), and consequently, \(P_{11}(r, 0) \) measured in any one vertical plane (having symmetry axis as vertical axis) completely specifies the direction dependence of the two-point correlation function.

To capture the short-range as well as long-range spatial patterns, in a majority of material microstructures the two-point correlation data are required over the distances ranging from 1 to 500 \(\mu \text{m} \) at a resolution of about 0.5 \(\mu \text{m} \). Therefore, the two-point correlation function cannot be measured from the usual “single field of view” microstructural images because such images either lack resolution (when magnification is low) or they lack the long-range spatial information (when magnification is high). Consequently, for the experimental measurement of the two-point correlation function, it is essential to create a seamless “montage” of very large number of contiguous microstructural fields of view (~100 fields), as explained in section “Large-Area Disector (LAD) for Efficient and Unbiased Estimation of Number Density” (see Fig. 21). As a montage can be at a high resolution (typically 0.5 \(\mu \text{m} \) resolution) and of very large area (typically few \(\text{mm}^2 \)s or so), it can capture both short- and long-range spatial patterns and correlations.

A computer code has been recently developed for the calculation of the two-point correlation function from the input image of a binary microstructural montage (Ref 37). The program reads the binary image and asks the user for the input to the maximum length \(l_{\text{max}} \) to which the two-point function is to be measured. A virtual rectangle inside the binary image, known as measurement frame, is then created such that each point inside this frame is at least \(l_{\text{max}} \) distance from the nearest edge. The computation begins with the reading of the gray value of the first pixel (base point) in the measurement frame to identify whether the pixel belongs to phase 1 (black) or phase 2 (white). The next step consists of reading of gray value of all the pixels inside a circle of radius \(l_{\text{max}} \) drawn around the base point, and computation of their Cartesian distance \(r \) from the base point and angle \(\theta \) with the vertical axis. The program separately stores all the length segments whose both end pixels are black. This process is then repeated for different distances and orientation angles to generate detailed data on the direction-dependent two-point correlation function \(P_{11}(r, \theta) \).

Fig. 29 Estimation of the bivariate size-orientation distribution function of microcracks. (a) Bivariate size-orientation distribution of the microcrack traces in a vertical metallographic plane where the vertical axis is the loading direction, in the 6061 aluminum alloy under a uniaxial compressive stress deformed to 0.7 strain. (b) The estimated 3-D bivariate size and orientation distribution of the microcracks. All angles are measured with respect to the loading direction (vertical axis). In compression, the majority of the microcracks are parallel to the direction of applied compressive load. (c) Marginal 3-D orientation distribution of the microcracks under uniaxial compression at 0.7 strain. (d) Marginal 3-D orientation distribution of the microcracks under uniaxial tension. Observe that majority of the microcracks are now perpendicular to the loading direction. For all the distributions, the size class interval for radius is 0.69 \(\mu \text{m} \), and for the orientation angle, it is 18°. Source: Ref 45
Since a montage is a large image, calculation of the two-point function over the distances from 1 to 500 μm typically involves measurements on about 7 million base pixels, and 4 million top pixels for each base pixel. This amounts to about 28×10^2 measurements, with the distance and angle computed for each such measurement.

This technique has been recently applied to quantify spatial clustering in the microstructures of an extruded metal matrix composite containing SiC particles in an aluminum alloy matrix (Ref 37). Figures 30(a) and (b) show two of the microstructures that have exactly the same volume fraction and size distribution of SiC particles: the only difference in these two microstructures is the spatial clustering of the SiC particles. Figure 30(c) depicts the normalized two-point correlation function in these microstructures along the extrusion direction (chosen vertical axis), and Fig. 30(d) depicts the normalized two-point correlation for the transverse direction. Observe that these correlation functions nicely capture the differences in the clustering tendencies and long-range spatial patterns in the two microstructures in Fig. 30(a) and (b), which demonstrates the utility of two-point correlation functions for mathematical representation of the clustering and spatial heterogeneity in microstructures (Ref 37).

Coordination Number Distribution. In the microstructures containing contiguous grains/particles, coordination number is an important geometric parameter. The coordination number of a grain/particle is the number of other grains/particles in direct contact with it. In general, a distribution of coordination numbers exists, which is an important descriptor of the short-range spatial arrangement of grains/particles. The mean coordination number (often referred to as just coordination number or connectivity in the sintering literature) is the average value of the coordination number distribution in the three-dimensional microstructure. The mean coordination number affects the mechanical response of liquid phase sintered materials (Ref 96), and it appears as a parameter in the theories of densification (Ref 97). There is often a correlation between the size of a grain and its coordination number. Therefore, a bivariate distribution of the 3-D coordination numbers that expresses the fraction of the grains having a given coordination number and having size in a certain narrow range is of importance. The mean coordination number and its distribution cannot be estimated from any measurements performed on independent 2-D metallographic sections. Direct observations on the 3-D microstructure are required for the estimation of the coordination number distribution. Further, to minimize the edge effects, the measurements must be performed on a large volume of the 3-D microstructure observed at a high resolution. Recently, a montage serial sectioning technique has been developed for creation of such a large volume of 3-D microstructure of an opaque material at a high resolution (~1 μm). The method combines the montage technique for creation of a large contiguous area of a metallographic plane at a high resolution with the serial sectioning method and 3-D digital image processing (see Fig. 31). The montage serial sections are stacked together and aligned (Fig. 31b and c), and the 3-D microstructure is reconstructed using 3-D image analysis software (Ref 32–35, 95). Figure 32 depicts small segments of two surface-rendered 3-D microstructures reconstructed in this manner, where the matrix was removed using image processing.

To determine the coordination number of a grain/particle, it is then necessary to examine its local microstructural environment and count the number of other grains/particles in contact with it. These observations are repeated over a large

![Fig. 30](image-url) Two-point correlation function. (a) Microstructure of a metal-matrix composite having uniform random distribution of SiC particles in an aluminum alloy matrix. The data points in (c) and (d) for this specimen are the open triangles. (b) Metal-matrix composite having highly clustered distribution of SiC particles in the particle-rich bands parallel to the extrusion direction (Y-axis of the micrograph). This specimen has exactly the same volume fraction and size distribution of the SiC particles as that in (a). The data points in (c) and (d) for this specimen are the dark rectangles. (c) Normalized two-point correlation function $P_{1}(r, 0)$ along the direction parallel to the extrusion direction (Y-axis). The dark rectangle data points for the composite having clustered SiC particles—i.e., (b)—do not reach the saturation value even at distances of 450 μm. (d) The normalized two-point correlation function $P_{2}(r, \pi/2)$ along the transverse direction. The data corresponding to the specimen with clustered SiC particles—i.e., (b)—show long-range oscillations that correspond to particle-rich and particle-poor regions. Source: Ref 37

![Fig. 31](image-url) Montage serial sectioning. The process involves creation of montages of large number of serial sections grabbed at a high resolution and then (a) aligned and stacked together to reconstruct a 3-D microstructure. (b) A stack of five montage serial sections of microstructure of a liquid phase sintered W-Ni-Fe alloy showing tungsten grains. The montages have been digitally compressed for presentation. Source: Ref 95. (c) A stack of aligned five serial sections of microstructure of metal-matrix composite showing SiC particles in aluminum alloy matrix. Each serial section shown here is a very small segment of the actual montages created. Source: Ref 98
number of grains/particles sampled in an unbiased manner, and the coordination number distribution is computed from such data. Figure 33 shows one such three-dimensional bivariate coordination number distribution of tungsten grains in a W-Ni-Fe alloy that was liquid phase sintered in the microgravity environment of the NASA’s space shuttle Columbia. Table 4 shows the data on the mean coordination number of the tungsten grains in this alloy processed in the microgravity and normal gravity environments. Observe that the microgravity environment leads to the microstructure that is more open and therefore has a lower mean coordination number.

Nearest-Neighbor Distribution Functions.
The spatial arrangement of particle/grain centers in the 3-D microstructure can also be characterized in terms of a series of nearest-neighbor distribution functions. The first nearest-neighbor distribution function is given by the probability density function $w_1(r)$ such that $w_1(r)dr$ is the probability that there is no other particle/grain center in a sphere of radius r around a typical particle/grain, and there is at least one particle/grain center in the spherical shell of radii r and $(r + dr)$. The second nearest-neighbor distribution function is characterized by the probability density function $w_2(r)$ such that $w_2(r)dr$ is the probability that there is exactly one other particle/grain center in a sphere of radius r around a typical particle/grain, and there is at least one particle/grain center in the spherical shell of radii r and $(r + dr)$. In general, nth nearest-neighbor distribution function $w_n(r)$ is the probability density function such that $w_n(r)dr$ is the probability

<table>
<thead>
<tr>
<th>Normal gravity</th>
<th>Microgravity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 min</td>
<td>120 min</td>
</tr>
<tr>
<td>2nd NND 83 wt%, 120 min, gravity</td>
<td>2nd NND 83 wt%, 120 min, microgravity</td>
</tr>
<tr>
<td>2nd NND 83 wt%, 1 min, microgravity</td>
<td>2nd NND 83 wt%, 1 min, gravity</td>
</tr>
<tr>
<td>1st NND 83 wt%, 120 min, gravity</td>
<td>1st NND 83 wt%, 120 min, microgravity</td>
</tr>
<tr>
<td>1st NND 83 wt%, 1 min, microgravity</td>
<td>1st NND 83 wt%, 1 min, gravity</td>
</tr>
</tbody>
</table>

Fig. 33 Bivariate distribution of three-dimensional coordination numbers of tungsten grains in an 83 wt% W-Ni-Fe alloy specimen liquid phase sintered in microgravity environment for 1 min at 1507 °C (2745 °F). The Z-axis is the fraction of grains having a given coordination number, and grain size in a given range. Source: Ref 35, 95

Fig. 34 Normalized 3-D nearest-neighbor distributions of tungsten grain centers in the specimens of W-Ni-Fe alloys under different processing conditions. (a) First nearest-neighbor distribution. (b) Second nearest-neighbor distribution. Source: Ref 95
that there are exactly \((n - 1)\) other particle centers in a sphere of radius \(r\) around a typical particle, and there is at least one particle center in the spherical shell of radii \(r\) and \((r + dr)\). The first nearest-neighbor distribution describes the short-range spatial arrangement of the particle/grain centers; progressively higher-order nearest-neighbor distributions characterize the spatial arrangement of the particles at the larger distances.

The nearest-neighbor distributions and the corresponding mean nearest-neighbor distances in the 3-D microstructure cannot be estimated from any measurements performed on independent 2-D metallographic sections, or by using a disector. Direct measurements on the 3-D microstructure are required for the estimation of these statistical distributions. Further, to minimize the edge effects, the measurements must be performed on a large volume of 3-D microstructures observed at a high resolution, which is possible via the montage serial sectioning technique (Fig. 33) explained in the previously. The coordinates of the centroids of the particles/grains can be measured in the reconstructed 3-D images; the nearest-neighbor distributions can be then computed from such data in a straightforward manner. Figure 34 shows normalized first and second nearest-neighbor distribution of the centers of the tungsten grains in the liquid phase sintered microstructures of a W-Ni-Fe alloy processed in the normal gravity and microgravity (Ref 95). In these plots, the nearest-neighbor distances are normalized by the average grain diameters. Observe that the normalized nearest-neighbor distributions are almost time invariant, indicating that the grain-coarsening process only leads to a scale change in the short-range spatial arrangement of the tungsten grains in these microstructures.

Radial distribution function is another important descriptor of the short-range, intermediate-range, long-range spatial arrangement of particle/grains centroids in a microstructure. The radial distribution function \(g(R)\) is equal to the ratio of the number of particle centers in a spherical shell of radii \(R\) and \((R + dR)\) around a typical particle and \((4\pi R^2 N_u dR)\), where \(N_u\) is the number density of the particles. For any microstructure, as \(R \rightarrow \infty\), \(g(R) \rightarrow 1\). The radial distribution function of the particle/grain section centers in a 2-D metallographic plane or in a 2-D microstructure can be defined in an analogous manner. The 3-D radial distribution function cannot be estimated from any measurements performed on independent 2-D metallographic sections, or by using a disector. Practical stereological techniques for the estimation of 3-D radial distribution function have not been yet developed. However, the 2-D radial distribution function of the particle/fiber sections can be estimated efficiently in an unbiased manner (free of edge effects) using large area high-resolution montages as described elsewhere (Ref 22). In the materials such as composites containing continuous aligned fibers, the radial distribution function of the fiber centers in the transverse section essentially contains all the 3-D information on the spatial arrangement of fibers. In such microstructures, the 2-D radial distribution function in the transverse section is useful for characterization of the spatial arrangement of fibers. Figure 35(a) shows microstructure of such a composite containing aligned continuous SiC (nicalon) fibers in a glass ceramic (MAS) matrix observed in the transverse section. Observe that the spatial distribution of the fibers is not uniformly random, because there are fiber-rich and fiber-poor bands in the microstructure. Figure 35(b) shows the experimentally measured radial distribution function of the centers of the fibers in this microstructure (Ref 23). The radial distribution function of a uniform random microstructure having the same volume fraction and size distribution obtained via computer simulations is superimposed on the experimental data. Observe that the first peak in the simulated data is much lower than that in the experimental data indicating short clustering of the fibers in the composite. Further, at the distances larger than 40 \(\mu m\), the experimental data consistently remain slightly below 1.0 indicating presence of fiber-poor regions in the microstructure. These experimental data have been used to develop a computer-simulated nonuniform microstructure that has the nonuniform spatial arrangement that is statistically similar to that in the composite. Such microstructure models can be used to predict the effects of microstructural variations on the mechanical response of the composite using the finite elements (FE) based or other computational mechanics techniques (Ref 99).

ACKNOWLEDGMENT

The Division of Materials Research of the U.S. National Science Foundation (NSF) and the Metallic Materials Program of the Air Force Office of Scientific Research (AFOSR) supported this work through the research grants DMR-9816518 and F49620-01-1-0045, respectively. Joseph Akkara and Bruce MacDonald are the Program Managers for the NSF grant, and C.S. Hartley is the Program Manager for the AFOSR grant. Additional financial support was provided by American Foundry Society (AFS)/United States Consortium for Automotive Research (USCAR) Project through the Structural Cast Magnesium Development (SCMD) program for which Richard Osborne, Donald Penrod, and Joseph Santner are the Program Managers. The financial support from the funding agencies is gratefully acknowledged. Published/unpublished research results of numerous past and present students of the author have been used in this contribution. The author gratefully acknowledges the contributions of his students K. Bodlak, A. Cottet, N.U. Deshpande, M.D. Dighe, W.J. Drury, M. Hlawiczkova, T. Joenes, Z. Shan, A. Tewari, S. Yang, H. Agarwal, A. Balasundaram, Felipe Correa, Soon Gi Lee, Scott Lieberman, Pascal Louis, Yuixiong Mao, T. H. Mirbelli, B.R. Morris, S. Mukherjee, G. R. Patel, H. Singh, and W.T. Whited.

REFERENCES

52. W. Yunxin, R.M. German, D. Blaine, B. Marx, and C. Schlaefer, Effects of Residual Carbon Content on Sintering Shrinkage, Microstructure and Mechanical Properties of
Quantitative Characterization and Representation of Global Microstructural Geometry / 447

64. M. Hlawiczkova, A.M. Gokhale, and V. Benes, Efficiency and Bias of Length Density Estimator, J. Microsc., Vol 204, 2001, p 2226–2231

76. R.L. Fullman, Measurement of Particle Sizes in Opake Bodies, Trans. AIME, Vol 197, 1953, p 47