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Y. AUSTIN CHANG

I have a long-standing interest in alloy thermodynamics/phase diagrams and in utilizing the principles
of this subject for materials research and engineering applications. At the same time, I also have a long
association with ASM International as a member and a former Trustee of the Society. The Society’s
initiative in promoting critical assessments of phase diagrams beginning in the late 1970s rekindled this
field and stimulated further research, particularly in phase diagram calculations. Significant advance-
ments have been made in phase diagram calculations using the Calphad approach since the late 1980s
due primarily to the availability of inexpensive computers and robust software. In this article, I first
present the use of computational thermodynamics including phase diagram calculation in teaching,
next the use of calculated phase diagrams, particularly for multicomponent systems, for materials
research/development, and manufacturing, and last describe some current research in advancing this
methodology when the phases involve ordering with decreasing temperature.

01-E-TP-05-340B-Lect  1/11/06  10:39 AM  Page 7



8—VOLUME 37B, FEBRUARY 2006 METALLURGICAL AND MATERIALS TRANSACTIONS B

I. INTRODUCTION

WHEN I learned from Bill Scott of ASM International
some time ago that I was selected to be the 2003 Edward
DeMille Campbell Lecturer, my immediate reaction was to
speak on a specific topic of research I have done in the past
or on a research topic I am actively pursuing. However, I
eventually decided to present an overview, undoubtedly a per-
sonal one, on the impact of Phase Diagram Calculations on
Teaching, Research and Industrial Applications since the early
1980s. I made this decision for two reasons. First, I have a
long-standing interest in thermodynamics and phase diagrams,
and second, the field of phase diagrams is a subject of great
interest to the ASM community. The leadership of the ASM,
both their staff and the membership, has played an important
role in revitalizing phase diagram research, particularly for
data assessment and industrial applications since the early
1980s. In this article, I will first give a brief introduction and
then stress the importance of phase diagram calculations in
teaching. I will then present the application of phase dia-
gram calculations or computational thermodynamics first for
materials research/development, and then manufacturing.
Finally, I will point to some possible future directions in
research on phase diagram calculations.

Phase diagrams are roadmaps for materials and process-
ing research/development. However, I believe that phase dia-
gram calculations will in the near future make a difference
even in manufacturing. Phase diagrams and thermodynam-
ics are closely interrelated and can be considered as the same
subject. For instance, when the thermodynamic properties of
all the phases in a system are known, the phase diagram can
be calculated. Recognizing the importance of phase diagrams
in the materials world, leaders in the ASM community took
the initiative in the late 1970s to raise funding to support
phase diagram evaluation including thermodynamic model-
ing, where this was possible. This effort revitalized world-
wide interest on the subject of “phase diagrams.”[1] In the
intervening years, significant advances have been made in
calculating phase diagrams of multicomponent alloy systems
built on the ASM activities on phase diagram data assess-
ment. I will focus my effort on the use of the phenomeno-
logical approach to calculating phase diagrams, while recognizing
the important contributions and advances being made by
the “first principles” computational community. In particu-
lar, the first principles calculated energies at 0 K now often
approach the accuracy of those measured by calorimetry. Fur-
ther, they can just as easily provide information for metastable/
unstable phases, something which experimentalists cannot
do. The calculated values are just as useful as the measured
values in developing thermodynamic databases.

II. TEACHING

For many years, I have been teaching a materials thermo-
dynamics course to incoming graduate students and a senior
level course on multicomponent phase equilibria with appli-
cations in mind to seniors and graduate students. I give one
example in the following section, which I teach in the grad-
uate level thermodynamics course in relating the characteristic
features of a phase diagram in terms of the relative thermo-
dynamic stabilities of the phases involved. Advances made
in utilizing computers to calculate phase diagrams has made

this exercise less challenging. The other example I give in
this section following the first one is to utilize computer-
calculated quaternary phase diagrams to help better visualize
the paths of solidification of alloys.

A. Relationship between the Characteristic Features of a
Binary Phase Diagram and the Relative Thermodynamic
Stabilities of the Phases Involved

One of the important lessons a student should learn about
phase diagrams from alloy thermodynamics lectures is that the
characteristic features of a phase diagram are governed by
the relative thermodynamic stabilities of the phases involved.
For instance, in a binary T-composition phase diagram at con-
stant T and p, normally 1 bar, there usually is a two-phase
field of solid and liquid from pure A to B. However, congru-
ent melting does take place either at a minimum or maximum.
The question one may ask is under what thermodynamic con-
ditions does this kind of melting take place? Why does it some-
times occur as a maximum and other times as a minimum?
What does a rather flat liquidus (or a solidus) curve mean ther-
modynamically? In other words, there is a point of inflection
in the liquidus (or solidus) curve. Since we have presented a
lecture on this topic at the symposium on Computational Meth-
ods in Materials Education at the 2003 Annual TMS Meeting,
San Diego, CA, and a manuscript summarizing our presenta-
tion has been published in the December 2003 issue of JOM-e:
a Web-Only Supplement to JOM,[2] I will only make a brief
summary here. Readers are referred to this article for a more
thorough presentation.

Figure 1 shows a phase diagram for the Mo-W system taken
from Rudy.[3] It is a simple diagram indeed. Both Mo and W
exhibit the bcc structure and are completely soluble in each
other both in the liquid and solid states. The solidus curve
was measured experimentally but the liquidus curve was esti-
mated. The melting temperature increases monotonically from
2896 K for Mo to 3695 K for W.[4] This is not surprising
since the difference in the lattice parameters of Mo and W is

Fig. 1—A calculated phase diagram of Mo-W assuming ideal behavior for
both the solid and liquid phases. The Gibbs energies of fusion for Mo and
W are �fus G(Mo) � 32,500 � 11.3T J mol�1 and �fus G(W) � 38,429 �
10.4T J mol�1.
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within 0.5 pct.[5] Within the uncertainties of the measured
solidus and estimated liquidus curves, the calculated solid/liq-
uid phase boundaries or the solidus/liquidus curves shown in
Figure 1, assuming ideal solution behavior for both the solid
and liquid phases, are in accord with the measured and esti-
mated values. In other words, the regular solution param-
eters L0 (L) and L0 (bcc) are 0. The enthalpies and entropies
of fusion of Mo and W given in the Figure 1 caption were
obtained from the Gibbs energies of fusion of Mo and W
given by Dinsdale[4] assuming the difference between the spe-
cific heats of the liquid and those of the solid to be zero. Let
me now introduce the Redlich–Kister[6] equation since it is
the almost universally accepted expression in the materials
thermodynamic community for describing the thermodynamic
behavior of substitutional alloys. This equation is

[1]

where GE is the excess Gibbs energy, xA and xB the mole
fractions of the component elements, and Lj’s are param-
eters. When j is 0, we have the regular solution parameter
L0. The parameter Lj is often expressed as a linear function
of T when T is higher than the Debye temperature. It is note-
worthy to point out that one should avoid using more than
three parameters at a constant temperature to represent the
solution behavior using this type of representation. Other-
wise, artifacts could be introduced.

A cigar-shaped liquidus-solidus curve results when the
values of the L0 (S) and L0 (L) are comparable and when
the melting points and entropies of fusion of the component
elements remain essentially the same. When they are both
positive, the width of the liquidus-solidus increases when
compared with that for the case when L0 (S) � L0 (S) � 0.
On the other hand, when they are negative, the width decreases.
Chang and Oates have presented these results elsewhere.[2]

Other examples of phase diagrams with cigar-shaped
liquidus/solidus curves other than Mo-W are the Ag-Au, Ag-
Pd, Cd-Mg, Co-Ni,[7] and Ge-Si[8] systems.

I will next use the Mo-W binary as a reference and show
the effect of changing the regular solution parameters of the
liquid and solid phases on the resulting phase diagrams. In
order to avoid causing any possible confusion, I will desig-
nate these binaries as A-B but take the enthalpies and
entropies of fusion for A and B to be the same as those of
Mo and W, respectively. In each of these calculated diagrams,
the cigar-shaped solidus-liquidus curves (when both solid
and liquid phases behave ideally) is shown as a reference in
order to appreciate the changes in the calculated diagrams
when the solution parameters of the competing phases are
changed. Figures 2(a) and (b) show the calculated phase dia-
gram using L0 (L) � 0 and L0 (S) � �20 kJ mol�1 as well
as L0 (L) � 0 and L0 (S) � 20 kJ mol�1. In this article, I
will always use the convention that the thermodynamic quan-
tities are expressed in terms of 1 mole of atoms, i.e., A1�xB

BxB
, unless stated otherwise. It is evident from Figure 2(a)

that melting occurs at higher temperatures when compared
with the cigar-shaped solidus-liquidus curves. Moreover, the
maximum melting temperature occurs at a single composi-
tion, i.e., the compositions of the liquid and the solid at the
melting point are the same. This kind of melting is referred
to as congruent melting. It is similar to the melting of a

GE � xAxBa
n

j�0
Lj (xA � xB) j

pure component A or B. On the other hand, other two-phase
alloys melt over a range of temperature with corresponding
composition changes. This resulting higher melting temper-
atures are reasonable since the solid phase becomes ther-
modynamically more stable with respect to the liquid phase.
The results shown in Figure 2(b) are the reverse since the
regular solution parameter of the solid phase is less exother-
mic than that of the liquid phase. A minimum congruent melt-
ing occurs in this case. In addition to exhibiting minimum
congruent melting, something else also happens. The solid
phase undergoes phase separation or the formation of a mis-
cibility gap at lower temperatures. According to the regular
solution model, the critical point for phase separation is Tc �
L0 (S)/2R � 1203 K, with Tc being the critical point and R
the universal gas constant. Real examples with phase dia-
gram shown in Figure 2(a) are Mo-Rh and Pb-Tl,[8] while
those in Figure 2(b) are Co-Pd, Co-Rh, and Cr-Mo.[8]

Figure 2(c) shows two calculated phase diagrams. The
solid lines are calculated using L0 (L) � 0 and L0 (S) � 50 kJ
mol�1, yielding a eutectic phase diagram. Let us compare
the values of L0 (S) used here with that used in calculating
the phase diagram (Figure 2(b)) since the liquid is ideal in
both cases. The thermodynamic parameters indicate that
the liquid in this case is much more stable than the solid
phase. This condition favors the liquid existing to lower tem-
peratures. A familiar real binary exhibiting this type of dia-
gram is Ag-Cu.[8] Both of these elements exhibit the fcc
structure and form a eutectic phase diagram. When we next
increase the value of L0 (L) from 0 to �50 kJ mol�1 and
keep that of L0 (S) � 50 kJ mol�1, the eutectic point goes
to a much lower temperature, as shown also in Figure 2(c).
This is due to the fact that liquid becomes even more stable
than the solid phase. Binary alloys exhibiting such a feature
tend to form glass when solidified from the melt at or near
the eutectic composition. Figure 2(d) shows a calculated dia-
gram when the liquid becomes highly endothermic with a
value of L0 (L) � 64 kJ mol�1, keeping that of L0 (S) � 50 kJ
mol�1. This calculated diagram is referred to as a monotec-
tic phase diagram. In other words, a liquid separates into two
phases just as a solid phase does when it is highly endother-
mic. We note from this phase diagram that the shape of the
solidus curve is rather flat at the nearly equal atomic com-
position. The entire solidus curve shows a point of inflec-
tion. This type of phase boundary, whether it is solid or
liquid, is anticipated to undergo phase separation at slightly
lower temperatures. This is indeed the case for the phase
diagram shown in Figure 2(d). One can find many real exam-
ples in the literature such as the Fe-rich liquidus in Fe-S[9]

and the Cr-rich bcc phase solidus in Cr-Ni.[10]

It is noteworthy to point out that the pioneering work
in relating the characteristic features of binary phase dia-
grams in terms of the relative thermodynamic stabilities of
the phases involved was done nearly a century ago by Van
Laar.[11,12] More recently a number of other researchers have
published similar diagrams to those presented here.[2,13–15]

The only difference is that with the availability of com-
mercial phase diagram calculation software nowadays such
as the Lukas et al. program,[16] ThermoCalc,[17] MTDATA,[18]

ChemSage,[19] FACT,[20] WinPhad,[21] PANDAT,[22,23] Fact-
Sage,[24] as well as other general software solving nonlin-
ear problems, the students can readily calculate a large
number of prototype phase diagrams without spending much
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effort. They can then concentrate their effort on learning
materials thermodynamics and phase diagrams.

I will next give only one ternary example that behaves con-
trary to intuition. This ternary A-B-C consists of two con-
stituent binaries with a regular solution parameter L0 (B,C) �
L0 (C,A) � �1 kJ mol�1 and a third one with parameter L0

(A,B) � �40 kJ mol�1. In other words, although the excess
Gibbs energies of all three binary phases, let us take the phase
to be liquid, are exothermic, the third binary liquid is signifi-
cantly more exothermic. In our example, the regular solution
parameter of the third binary phase is 40 times more exother-
mic than those of the other two binary phases. The question
is what happens when we mix the three binary liquid phases

together. Are they going to form a single homogeneous liq-
uid phase or are they going to be phase separated? I think most
people’s initial reaction is that they would form a single homo-
geneous phase instead of phase separation. Figure 3(a) shows
a calculated isothermal section at 500 K using the parameters
given earlier. Contrary to our initial intuitive reaction, a ternary
miscibility forms. This example was first, as far as I know,
pointed out by Meijering[25,26] and Meijering and Hardy.[27]

Figures 3(b) and (c) show two calculated isopleths: A0.5B0.5-
C and A0.4C0.6-B0.4C0.6. These two isopleths differ in that the
tie-lines for the diagram in Figure 3(b) lie within the T vs com-
position plane; thus, their tie-lines are shown in this figure but
not for the diagram in Figure 3(c). Figure 3(b) can be considered

(a) (b)

(c) (d )

Fig. 2—(a) A calculated phase diagram of a hypothetical binary A-B using L0 (L) � 0 J mol�1 and L0 (S) � �20,000 J mol�1. The Gibbs energies of fusion
of A and B are taken to be the same as those of Mo and W. The dashed lines are the solidus-liquidus curves calculated when both solid and liquid phases
behave ideally. (b) A calculated phase diagram of a hypothetical binary A-B using L0 (L) � 0 J mol�1 and L0 (S) � 20,000 J mol�1. The Gibbs energies of
fusion of A and B are taken to be the same as those of Mo and W. The dashed lines are the solidus-liquidus curves calculated when both solid and liquid
phases behave ideally. (c) Calculated phase diagrams of a hypothetical binary A-B using two different sets of parameters: (1) L0 (L) � 0 J mol�1 and L0 (S) �
50,000 J mol�1 and (2) L0 (L) � �50,000 J mol�1 and L0 (S) � 50,000 J mol�1. The Gibbs energies of fusion of A and B are taken to be the same as those
of Mo and W. The dashed lines denote the solidus-liquidus curves calculated when both solid and liquid phases behave ideally. The solid lines denote the cal-
culated phase diagram using the parameters from (1) and the dash-dot-dashed lines using the parameters from (2). (d) A calculated phase diagram of a hypo-
thetical binary A-B using L0 (L) � 64,000 J mol�1 and L0 (S) � 50,000 J mol�1. The Gibbs energies of fusion of A and B are taken to be the same as those
of Mo and W. The dashed lines are the solidus-liquidus curves calculated when both solid and liquid phases behave ideally.
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(a) (b)

(c)

Fig. 3—(a) A calculated isothermal section of A-B-C at 500 K with L0 (A-B, L) � �40 kJ mol�1 and L0 (B-C, L) � L0 (C-A, L) � �1 kJ mol�1. The
elements A, B, and C and the solutions are liquid at this temperature. The compositions are given in mole fractions. (b) A calculated isopleth of A0.5B0.5-
C using the parameters given in the caption of (a). This isopleth can be considered as a quasi-binary system. The compositions are given in mole fraction
of C. (c) A calculated isopleth of A0.4C0.6-B0.4C0.6 using the parameters given in the caption of (a). The tie-lines are not in the plane of the T-composition
section. The compositions are given in mole fractions of B.

as a true binary (or pseudo- or quasi-binary) phase diagram.
This is a rare case since the phase behaves like a regular solu-
tion. Had we drawn the T-composition sections between A1�xBx

and C, we would not have quasi-binaries except for the one
shown in Figure 2(b) when x � 0.5. In reality, most of the
T-composition sections in ternaries are not quasi-binaries but
are isopleths. In other words, the tie-lines do not lie in the
T-composition plane. One real example exhibiting this type of
behavior is ternary (Cu,Pb,Sn) liquid.[28] The constituent binary
liquid alloys do not behave regularly. However, I estimated
the regular solution parameters for these three binary liquids
using the thermodynamic data given by Hultgren et al.[7] They
are L0 (Cu,Pb) � 20.7 kJ mol�1, L0 (Pb,Sn) � 9.8 kJ mol�1,

and L0 (Cu,Sn) � �20.7 kJ mol�1, respectively. In other words,
the regular solution parameter for one of the three binary liq-
uids, i.e., (Cu,Sn), is much more negative than those of the
other two.

B. Phase Diagrams of High-Order Alloy Systems

Visualization of binary T-composition diagrams at con-
stant pressure, p, as well as ternary isotherms, also at con-
stant p, is straightforward since they are two-dimensional
representations of temperature-composition and composition-
composition relationships. My experience in teaching ternary-
phase diagrams leads me to believe that most of us can readily
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Fig. 4—Calculated liquidus projections of three constituent Al ternaries of
Al-Cu-Mg-Si in the Al-rich corner using PANDAT[22] and PanAluminum.[29]

The symbols �, �, S, T, and W denote the intermetallic phases Al2Cu,
Al3Mg2, Al2CuMg, (Al,Cu)49Mg32, and Al7Cu3Mg6, respectively. The com-
positions are given in weight fractions.

learn to analyze three-dimensional representations when the
information on one of the dimensions is projected onto a two-
dimensional plane such as the liquidus projection of a ternary
system. Most of us metallurgists learn to use these diagrams
to estimate phase formation sequences during nonequilibrium
solidification of an alloy in a rather simple ternary system.
However, the task becomes much more challenging when
we carry out such an analysis for a quaternary, not to men-
tion a higher order, system. Yet, most real alloys consist of
at least four component elements. On the other hand, I have
recently found that rapid advancement made in commercial
software to calculate multicomponent phase diagrams and
the availability of reliable thermodynamic databases has
allowed me to make some progress in teaching quaternary
phase diagrams in this direction. I here give one example to
illustrate the use of a computer graphics presentation to con-
vey the information given on a liquidus projection of the Al-
rich Al-Cu-Mg-Si system to the students.

Figure 4 shows the calculated liquidus projections of Al-
Cu-Si, Al-Mg-Si, and Al-Cu-Mg, three constituent Al ternar-
ies of Al-Cu-Mg-Si. The compositions are given in weight
fractions. The symbols �, �, S, T, and W denote the inter-
metallic phases Al2Cu, Al3Mg2, Al2CuMg, (Al,Cu)49Mg32,
and Al7Cu3Mg6 respectively. Moreover, the liquid composi-
tions of the monovariant equilibrium, L � (Al) � Mg2Si, in
the vicinity of e3, the binary Al-Mg eutectic nearly coincide
with the compositional axis for the Al-Mg binary. The liq-
uid compositions of this monovariant equilibrium in Al-
Mg-Si are shown in the inset of Figure 4, allowing us to
comprehend the equilibria in the compositional vicinity of I4

and I5 (two ternary eutectics in Al-Mg-Si and Al-Cu-Si,
respectively). Explanation of these symbols I4 and I5 is given
in a later paragraph. Phase diagram calculations of these
ternaries as well as the quaternary Al-Cu-Mg-Si system were
carried out using the software PANDAT[22] and the thermo-
dynamic database PanAluminum.[29] The three binary Al-rich

eutectics with their temperatures are shown in Figure 4 as
e1 for Al-Si, e2 for Al-Cu, and e3 for Al-Mg, respectively.
As shown in these diagrams, there are five type-I four-phase
invariant and two type-II four-phase invariant equilibria. How-
ever, only the II1 invariant at 467 °C is presented in the inset
in Figure 4 (the lower one). The temperatures of these invari-
ant equilibria are also given in this figure. The two saddle
points, L � (Al) � S and L � (Al) � Mg2Si, are denoted
as s1 (591 °C) and s2 (515 °C), respectively.

Figure 5(a) shows three compositional coordinates in the
x, y, and z directions. The compositions of the liquid for the
three binary eutectics, taken from Figure 4, are replotted on
these axes and denoted as e1 for the (Al) � Si eutectic, e2

for the (Al) � � eutectic, and e3 for the (Al) � � eutectic.
The symbols � and � have been defined previously. The com-
positions of the liquid for the monovariant three-phase equi-
libria, L � solid1 � solid2, in these three Al ternaries,
emanating from their constituent binary eutectics as well as
from the two saddle points, s1 (L � (Al) � MgSi2) and s2

(L � (Al) � S) in the ternary regime, are also shown in these
ternaries. When three such monovariant equilibria intersect
with each other, a four-phase invariant forms. Figure 5(a)
shows the existence of five type-I four-phase equilibria, i.e.,
ternary eutectics, and two type-II four-phase equilibria (also
Figure 4), but only II1 is identified, as noted previously. Adopt-
ing the notations of Rhine[30] and following the format of
Chang and co-workers,[28,31–33] these invariants are denoted as
I1, I2, etc. to I5 and II1, with the subscript 1 indicating the
highest temperature and 5 the lowest. There are two saddle
points, one in Al-Cu-Mg and the other in Al-Mg-Si. For the
I4 and I5 invariant equilibria, see the inserts in Figure 4 for
details. In addition, the primary phases of solidification are
also given in this figure. It then becomes abundantly clear,
for instance, that the liquid compositions represented by the
line from e1 to I2 are in equilibrium with Si and (Al) and those
from s2 to I3 in equilibrium with (Al) and S. The symbols S
and T have been defined previously.

The four-phase invariants in the three ternaries enter into
the four-component Al-Cu-Mg-Si space as monovariant equi-
libria, in a manner similar to the way binary invariants enter
into the two-dimensional plane for ternaries. The composi-
tions of the liquid for the monovariant four-phase equilib-
ria, L � solid1 � solid2 � solid3, are shown in Figure 5(b)
as red lines to differentiate them from those monovariants
for the ternaries. There are a total of 6 five-phase invari-
ants denoted as I1(q), I2(q), I3(q), II1(q), II2(q), and II3(q)
and 3 saddle points s1(q), s2(q), and s3(q), with the symbol
(q) indicating that they are for the quaternary system. The cal-
culated compositions of the phases at the invariant equilib-
ria are given in Table I and the calculated reaction sequences
for the invariant equilibria are given in Figure 5(c). The four-
and five-phase equilibria given in Figure 5(b) are enclosed
with boxes by full lines, as shown in Figure 5(c). On the
other hand, the four-phase equilibria, not given in Figure 5(b)
but needed to complete the invariant reactions in Figure 3(c),
are enclosed with boxes by dashed lines. It is worthwhile
noting that one additional primary phase of solidification
in the center part of this figure is the quaternary intermetallic
phase Al5Cu2Mg8Si6 denoted as Q. Again, we can read from
this figure (certainly with the help of the reaction sequences
given in Figure 5(c)) the solid phases in equilibrium with
the liquid along the monovariant equilibria. For instance,
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the liquid with compositions from II1(q) to I1(q) is in equi-
librium with (Al), Si, and Q, that from II1 to s1(q) with (Al),
Q, and Mg2Si, and that from s3(q) to I2(q) with (Al), �, and
Mg2Si, respectively.

Let us suppose that we do not have the reaction sequences
given in Figure 5(c), how can we deduce the equilibrium reac-
tions involved for any of the five-phase invariants presented
in the liquidus projection, i.e., Figure 5(b). I will first take a
type-I five-phase invariant equilibrium such as I1(q) as an exam-

ple. Since it is a eutectic reaction, L � (Al) � � � (Si) � Q,
there must exist 4 four-phase equilibria above the invariant tem-
perature and 1 four-solid-phase equilibrium below.[30] Three of
the four above the invariant temperature presented in the liq-
uidus projection are L � Q � Si � (Al), L � � � Si � (Al),
and L � Q � � � (Al). The fourth one must be L � � � Q �
Si. These four equilibria react with each other at the invariant
temperature to form a type-I five-phase equilibrium. Immedi-
ately below this invariant temperature, the fifth four-phase

(a) (b)

(d)(c)

Fig. 5—(a) Calculated liquidus projections of Al-Cu-Mg-Si in the Al corner showing the liquid compositions of the binary eutectics e1, e2, and e3, as well as
those of the monovariant equilibria emanating from binaries to the three ternary regions including those at the four-phase invariants. The primary phases of
solidification in the respective ternaries are also shown. The symbols �, �, S, T, and W denote the intermetallic phases Al2Cu, Al3Mg2, Al2CuMg, (Al,Cu)49Mg32,
and Al7Cu3Mg6, respectively. The compositions are given in weight fractions. (b) Calculated liquidus projections of Al-Cu-Mg-Si in the Al corner showing the
liquid compositions of the binary invariant reactions, e1, e2, and e3, and the ternary invariant reactions, I1, I2, etc. to I5 and III, as well as those of the mono-
variant four-phase equilibria emanating from the ternaries to the quaternary space including those at the five-phase invariants. The additional primary phase of
solidification in this quaternary is the quaternary phase Q. All the liquid composition curves and the primary phase of solidification are presented in red color.
The symbols I1(q), I(q)2, etc. and II1(q), II2(q), etc. refer to the types of invariants for the quaternary Al-Cu-Mg-Si system. The symbols �, �, S, T, W, and Q
denote the intermetallic phases Al2Cu, Al3Mg2, Al2CuMg, (Al,Cu)49Mg32, Al7Cu3Mg6, and Al5Cu2Mg2Si6, respectively. The compositions are given in weight
fractions. (c) Reaction sequences for the invariant equilibria shown in the liquidus projections of Al-Cu-Mg-Si (b). The four-phase invariant equilibria enclosed
with dash line boxes are not shown in (b). (d) Calculated path of solidification of 6061 Al alloy, Al-0.25Cu-1Mg-0.6Si (in wt pct) according to the Scheil solid-
ification condition shown on the liquidus surface of the quaternary Al-Cu-Mg-Si system. At P0 (651 °C), (Al) forms, or L � (Al) coexist; at P1 (579 °C),
Mg2Si forms, or L � (Al) � Mg2Si coexist; at P2 (546 °C), Si forms or L � (Al) � Mg2Si � Si coexist; at II1(q) (541 °C), L � Mg2Si � (Al) � Si � Q;
from II1 → I1(q) (541 °C to 509 °C), L � (Al) � Si � Q coexist; and at I1(q) (509 °C), L � (Al) � Si � Q � �. The freezing temperature range is 142 °C.
The symbols �, �, S, T, W, and Q denote the intermetallic phases Al2Cu, Al3Mg2, Al2CuMg, (Al,Cu)49Mg32, Al7Cu3Mg6, and Al5Cu2Mg2Si6, respectively. The
compositions are given in weight fractions.
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equilibrium with all solid phases, (Al), �, (Si), and Q, forms.
The reaction sequence for this type-I five-phase equilibrium is
shown schematically subsequently. It is the same as that cal-
culated thermodynamically, as shown in Figure 5(c). It is worth
noting that the only four-phase equilibrium, L � � � Q � Si,
given below is enclosed in a box with a dashed instead of

Table I. Calculated Compositions of the Phases at the Invariant Temperatures in the Al-Cu-Mg-Si System[33]*

Type of Composition, Mol Fraction

Invariants Reaction T (°C) Phase xAl xCu xMg xSi

II1(q) �MgL2Si � (Al) � (Si) � Q 541 L 0.799 0.039 0.053 0.109
(Si) 0 0 0 1
Mg2Si 0 0 0.667 0.333
Q 0.238 0.095 0.381 0.286
(Al) 0.974 0.006 0.009 0.011

II2(q) L � Mg2Si � (Al) � � � Q 511 L 0.747 0.164 0.067 0.022
(Al) 0.965 0.019 0.013 0.003
Mg2Si 0 0 0.667 0.333
Q 0.238 0.095 0.381 0.286
� 0.679 0.321 0 0

I1(q) L � (Al) � � � (Si) � Q 509 L 0.767 0.137 0.036 0.060
(Si) 0 0 0 1
Q 0.238 0.095 0.381 0.286
(Al) 0.967 0.019 0.005 0.009
� 0.679 0.321 0 0

I2(q) L � (Al) � � � Mg2Si � S 502 L 0.725 0.171 0.096 0.008
Mg2Si 0 0 0.667 0.333
(Al) 0.960 0.018 0.021 0.001
S 0.5 0.25 0.25 0
� 0.678 0.322 0 0

II3(q) L � S � (Al) � Mg2Si � T 467 L 0.651 0.047 0.301 0.001
Mg2Si 0 0 0.667 0.333
(Al) 0.881 0.003 0.116 0
T 0.539 0.066 0.395 0
S 0.5 0.25 0.25 0

I3(q) L � (Al) � � � Mg2Si � T 448 L 0.625 0.005 0.369 0.001
Mg2Si 0 0 0.667 0.333
T 0.567 0.038 0.395 0
� 0.615 0 0.385 0
(Al) 0.836 0.0004 0.1636 0

*The symbols �, �, S, T, W, and Q denote the intermetallic phases Al2Cu, Al3Mg2, Al2CuMg, (Al,Cu)49Mg32, Al7Cu3Mg6, and Al5Cu2Mg8Si6, respectively.

I2: L � � � Si � (Al) L � Q � Si � (Al) L� � � Q � Si L � Q �� � (Al)

I1(q): L : Si � (Al)� Q � �

� � Q � Si � (Al)

solid line to indicate that this four-phase equilibrium is not
presented in Figure 5(b). This example may appear straight-
forward and obvious. However, I will next give another exam-
ple, a type-II invariant reaction such as II1(q);[30] it is a bit
less obvious when compared with a type-I invariant reaction.
For such a reaction, there exist 3 four-phase equilibria about
the invariant temperature and 2 below.[30] Two of the 3 four-
phase equilibria, as presented in Figure 5(b), are L � Mg2Si �
Si � (Al), represented by the monovariant line from I1 to II1(q),
and L � Mg2Si � Q � (Al), represented by the monovariant

line from s1(q) to II1(q). The 2 four-phase invariant equilibria
below the invariant temperature are L � Q � Si � (Al), rep-
resented by the monovariant line from II1(q) to I1(q), and
Mg2Si � Q � Si � (Al), all solid phases. The existence of
the L � Q � Si � (Al) four-phase equilibrium below the five-
phase invariant temperature leads to the conclusion that Mg2Si
must be the high-temperature phase. Accordingly, this type II
reaction is deduced to be L � Mg2Si � Q � Si � (Al). Since
a five-phase equilibrium can be represented by a tie hexahe-
dron consisting of five tie tetrahedrons, it is possible to deduce
that the third four-phase equilibrium is L � Mg2Si � Q �
Si, as shown subsequently. It is the same as that calculated

I2: L � �g2Si � Si � (Al) S1(q): L � �g2Si � Q � (Al)

II1(q): L � Mg2Si : Si � (Al) � Q

L � Q � Si � (Al) Mg2Si � Q �  Si � (Al)

thermodynamically, as shown in Figure 5(c). A simpler
approach is to note that each of the five phases only appear
four times in the 5 four-phase equilibria. In other words, the

L � �g2Si � Q � Si
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Fig. 6—Liquid compositions as a function of temperature during the solid-
ification of the 6061 Al alloy, Al-0.25Cu-1Mg-0.6Si (in wt pct).

phases L and Mg2Si must be in equilibrium with Q and Si
at temperatures higher than the invariant temperature.

With classes in the past, I used to discuss solidification
paths only for binary and ternary alloys. However, with the
availability of computer calculated multicomponent higher
order phase diagrams, I can now present the solidification
paths of higher order alloys. In the following, I will do so
for a 6061 alloy, Al-0.25Cu-1Mg-0.6Si (in wt pct), accord-
ing to the Scheil solidification condition again using the soft-
ware PANDAT. Since the major elements in 6061 alloys are
Al, Cu, Mg, and Si, neglecting the other minor elements makes
little difference as far as teaching is concerned. The calculated
solidification path is plotted in Figure 5(d) from P0 : P1 :
P2 : II1(q) : I1(q) as a circled line. Solidification of (Al)
begins when the temperature drops to the Al-Cu-Mg-Si liq-
uidus surface at 651 °C, P0 (Figure 5(d)). The temperature of
the liquid in equilibrium with (Al) decreases continuously
from P0 to P1. Once the liquid composition reaches P1 on
the L � (Al) � Mg2Si three-phase surface, the Mg2Si phase
starts to solidify from the melt and the composition of L fol-
lows the curve P1-P2. When the composition of L reaches
the point P2 (546 °C) on the monovariant four-phase
equilibrium, L � (Al) � Mg2Si � Si, the composition of L
changes its direction and then follows the monovariant line
P2-II1(q). At this point, the quaternary phase Q starts to form
from the liquid via a five-phase invariant reaction, II1(q): L �
Mg2Si � (Al) � Si � Q (Figure 5(d) and Table I). With
further decreases in temperature, the remaining L continues
solidifying along the four-phase L � (Al) � Si � Q mono-
variant line II1(q)-I1(q). At the five-phase invariant I1(q)
(509 °C, also Figure 5(d) and Table I), solidification ends at
the quaternary eutectic invariant, L � (Al) � Si � Q � �,
similar to what happens in binary and ternary liquid alloys.
The only difference is that this quaternary liquid alloy trans-
forms isothermally to four solids instead of three for a ternary
and two for a binary alloy. With a computer-generated graph-
ical presentation in a formal class, I can first show Figure 4
and give the students time to appreciate the liquidus projec-
tions in the three Al-ternaries and then show essentially the
same information on Figure 5(a). By this time, the students
are quite familiar with this information and I can then show
(in red color) the extension of the four-phase invariant equi-
libria (in the ternaries) into the quaternary space as mono-
variant equilibria. When three of these monovariant four-phase
equilibria (plus another four-phase equilibrium, not shown
in this figure) intersect with each other, a five-phase invari-
ant equilibrium forms, as discussed earlier.

Composition changes in the liquid of the 6061 alloy dur-
ing solidification under the Scheil condition cannot be obtained
from Figure 5(d). However, these changes can be calculated
readily using PANDAT and PanAluminum and presented in
Figure 6 in terms of temperature as a function of the liquid
compositions of Cu, Mg, and Si, respectively. Although the
initial Cu composition in 6061 alloy is only 0.25 wt pct, that
in the liquid during the final stage of solidification could be
higher than 25 wt pct, an increase of two orders of magni-
tude. This drastic composition difference is a result of
microsegregation during the course of solidification. The frac-
tions of each phase formed during solidification are shown in
Figure 7. The fractions for Si, Q, and � are very small, being
less than 0.2 vol pct and are difficult to detect experimentally
in the cast alloys unless extreme care is taken.

The preceding analysis does not tell us what happens
when an alloy solidifies under global equilibrium condi-
tion, i.e., when it is cooled infinitely slowly from the melt.
Even though an alloy rarely solidifies under these condi-
tions, it is helpful to know the equilibrium phases formed
when the temperature is decreased. Such information can
be readily obtained from a calculated isopleth, as shown
in Figure 8. It is a T vs Cu composition section of Al-Cu-
Mg-Si, or an isopleth, with the compositions of Mg and Si
kept constant at 1 and 0.6 wt pct, respectively. It is clear
from Figure 8 that global equilibrium solidification of the
6061 alloy, Al-0.25Cu-1Mg-0.6Si, begins also at 651 °C
and ends at 600 °C. This freezing range is 51 °C, only one-
third of the freezing range of 142 °C when solidification
takes place under the Scheil condition. The Scheil solidifi-
cation condition is closer to actual casting conditions for
substitutional alloys. While it is possible to estimate the

Fig. 7—Calculated phase fractions of the 6061 alloy, Al-0.25Cu-1Mg-0.6Si,
as a function of temperature under the Scheil solidification condition; the
insert shows an enlarged view for the phase fractions below 0.01. The phase
fractions are given in volume percent.
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Fig. 8—A calculated isopleth in terms of T vs the composition of Cu with
the compositions of Mg and Si held constant at 1 and 0.6 wt pct, respectively.
The dark vertical line highlights the alloy composition, Al-0.25Cu-1Mg-
0.6Si. The abscissa is the composition of Cu in weight fractions. When the
composition of Cu is 0, the weight fraction of Al is 0.984.

Fig. 9—Calculated partition coefficients of Cu in the (Al) phase for a binary
Al-3.28Cu alloy, a ternary Al-3.28Cu-5.9Si alloy, a quaternary Al-3.28Cu-
5.9Si-0.42Mg alloy, and a seven-component B-319 alloy. The composition
of B-319 is given in the figure. All compositions of these alloys are given
in weight percent.

phase formation sequence when binary and ternary alloys
solidify from their phase diagrams, it is very difficult, if
not impossible, to do so for a multicomponent alloy from
an isopleth such as that for 6061 from Figure 8. However,
such information can be readily obtained from a curve sim-
ilar to that shown in Figure 7 calculated using a thermo-
dynamic database such as PanAluminum.

I would like to add one more comment concerning par-
tition coefficients. In multicomponent alloys, these have usu-
ally been assumed to be constant in the past when computer
calculation of phase diagram was not the norm. These coef-
ficients are the ratios of the compositions of solid and liquid
in equilibrium with each other at a specified temperature
with the pressure being held constant, normally 1 bar. While
this assumption is not serious for binary alloys, it could cause

serious errors for multicomponent alloys. As shown in Figure 9,
while the partition coefficients of Cu in (Al) in binary
Al-3.28Cu do not change appreciably with temperature, those
in ternary Al-3.28Cu-5.9Si, quaternary Al-3.28Cu-5.9Si-
0.42Mg, and a multicomponent commercial B319 alloy Al-
3.28Cu-5.9Si-0.42Mg-0.75Fe-0.36Mn-0.98Zn do change
appreciably with temperatures.[33]

III. APPLICATIONS

In this section, I give five examples to illustrate the use
of computational thermodynamics including phase diagram
calculation for materials research/development and manu-
facturing with four focusing on the former and one on the
latter, i.e., manufacturing. Out of the four examples for mate-
rials research/development, two are for structural materials,
one for functional materials, and the other one could be
either. The first example is concerned with a rapid and effi-
cient approach for generating a thermodynamic description
or database for a quaternary Mo-Si-B-Ti system for identi-
fying potential alloy compositions that may exhibit desir-
able microstructures for high-temperature applications. The
second one is to use a thermodynamically calculated iso-
pleth to identify optimum compositions of Ti addition in
order to improve the glass-forming ability (GFA) of a known
glass-forming quaternary (Al,Cu,Ni,Zr) alloy. Since bulk
metallic glasses represent a new class of materials with great
potentials as either structural or functional materials, there
is an urgent need to use a scientifically sound approach to
identify potential alloys for glass formation instead of the
traditional empirical trial and error experimentation. In a
recent review article, Loffer[34] made the following state-
ment: “... the search for new bulk metallic glass composi-
tions is somewhat a ‘trial-and-error’ method, involving in
many cases the production of hundreds to thousands of dif-
ferent alloy compositions.” The third example is the use of
computational thermodynamics for selecting appropriate filler
metals to minimize cracks in welding multicomponent alu-
minum alloys. The fourth example is to use computational
thermodynamics to identify potential binary alloys with a
tendency to form glass or amorphous alloy thin films via a
rapid quenching process such as sputtering deposition. The
metallic alloys in the amorphous state can be readily oxi-
dized to form a smooth surface for potential applications as
the tunnel barriers in magnetic tunnel junctions (MTJs).
These junctions are being considered as sensitive magnetic
sensors and nonvolatile storage cells in magnetic memories.
In the last case, I will present one example to show that
computational thermodynamics can even replace experi-
mentation to certify alloys for commercialization such as
Ti6Al4V. The numerals 6 and 4 represent the wt pct of Al
and V in these alloys, respectively.

A. Materials Research/Development and Manufacturing:
(1) Rapid Development of a Thermodynamic Description
of Mo-Si-B-Ti Using a Computational/Experimental
Approach Serving as a Road Map for Developing
Materials beyond Nickel-Based Superalloys

The limit imposed on improving the efficiency of turbine
engines for high-temperature applications such as aircraft
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Fig. 10—A 1600 °C isotherm of Mo-Si-B in the Mo-rich corner of this
ternary system. Compositions are given in mole fractions.

engines is the lack of suitable materials since the currently
used nickel-based superalloy in these engines is already sub-
jected to a temperature as high as 90 pct of its melting point.
Facing this challenge, the materials community has been moti-
vated to pursue research on very high-temperature alloys in
order to develop new materials beyond the nickel-based super-
alloys. In addition to high melting points, these materials must
exhibit resistance to oxidation, deformation, creep, fracture,
etc. at all temperatures. Moreover, since these materials are
being developed for aerospace applications, their densities
must be low. Above all of these technical challenges, the
cost of producing these materials has to be economically com-
petitive. A review of the elements in the periodic table sug-
gests that the two obvious elemental candidates are Nb and
Mo. While refractory metals such as Nb and Mo have very
high melting points and relatively low densities, they lack oxi-
dation resistance. One way to improve their oxidation resis-
tance is to have a multiphase structure material consisting of
a ductile metallic phase in equilibrium with one or more
oxidation-resistant and yet strong metallic silicides. It is well
known that metal silicides form protective silica glass scales
at very high temperatures. Although Nb-silicide and Mo-sili-
cide composites showed early promise, additional alloying
elements are needed so as to develop balanced overall prop-
erties in terms of high-temperature strength, low-temperature
damage tolerance, oxidation resistance, and creep strength.
About 5 years ago, Y. Yang began to do her doctoral thesis
research on the phase equilibria of quaternary Mo-Si-B-Ti sys-
tem[35–39] at the University of Wisconsin (Madison, WI). Here,
I will first introduce this subject briefly and then present the
strategy used to rapidly develop a thermodynamic description
of this quaternary system using a minimum amount of experi-
mentation. On the basis of the calculated phase diagrams of
this quaternary system, potentially interesting multiphase equi-
libria or composites have been identified and studied.

Figure 10 shows a 1600 °C isotherm of Mo-Si-B in the
Mo-rich corner of this ternary system.[40,41] The intermediate
phases in the Mo-rich corner are Mo3Si(A15) and Mo5Si3(T1,
tI32, D8m) in Mo-Si and Mo2B and MoB in Mo-B. There

is additionally a ternary phase Mo5SiB2 (T2, tI32, D81). It
is worth noting that even though both T1 and T2 have the
same Pearson symbol, their structures differ. The prototype
for T1 is W5Si3 and that for T2 is Cr5B3. In order to sim-
plify the notations, I will in this article refer to Mo3Si as
A15, Mo5Si3 as T1(D8m), and Mo5SiB2 (D81) as T2. As
shown in this figure, �-(Mo) is in equilibrium with the A15
and T2 phases, and the A15 phase is in turn also in equi-
librium with the T2 and T1 phases. Berczik[42,43] found that
the ductile �-(Mo) phase in the composites of �-(Mo) �
A15 � T2 can greatly enhance the room-temperature and
high-temperature toughness of the materials, but the side
effect is degradation of the oxidation resistance. On the other
hand, Meyer et al.[44] found that composites consisting of
A15 � T1 � T2 exhibit good oxidation resistance but poor
fracture toughness. This is due to the fact that all three com-
ponent elements in the A15 � T1 � T2 composites are brit-
tle. The most promising route is to develop multiphase
equilibria consisting of a ductile � phase in equilibrium with
T1 and T2. This is impossible with Mo-Si-B, but probable
when we add other metallic elements. Instead of a three-
phase equilibrium of �-(Mo) � A15 � T2, we may have
one consisting of �-(Mo,M) � T1 � T2 with M an added
metal. In the present article, I use �-(Mo,M) and bcc inter-
changeably to represent the solid solution of (Mo,M) with
the bcc structure.

After reviewing the literature on the thermodynamics and
phase equilibria of relevant binary and ternary systems, Ti was
identified as such an added element based on the following
rationale: (1) Ti can completely substitute Mo at high tem-
peratures in the bcc structure in addition to having extensive
solubilities in the T1 and A15 phases (the Mo-Ti-Si isotherm
in Figure 11) and (2) substitution of Mo by Ti improves the
strength of the metallic phase and the fracture toughness of
intermetallic phases.[43,45] The quaternary Mo-Si-B-Ti system
consists of four constituent ternaries and six binaries. In order

Fig. 11—A schematic isothermal tetrahedron that displays the phase rela-
tionship among the bcc, T2, A15, T1, and D88 phases on the metal-rich
side of the Mo-Si-B-Ti quaternary system at 1600 °C. This diagram was
drawn based on the results calculated from the preliminary thermodynamic
modeling. The compositions are given in mole fractions.
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to obtain a thermodynamic description for this quaternary, it
is essential to first obtain descriptions for the constituent bina-
ries and then the ternaries.[46] Thermodynamic descriptions
were available for all six constituent binaries: Mo-Si,[47]

Mo-B,[48] Mo-Ti,[49] Si-B,[50] Si-Ti,[51] and B-Ti.[52] However,
it was found necessary to develop an improved description for
Mo-B.[39] Of the four constituent ternaries, Mo-Si-B, Mo-Si-Ti,
Mo-B-Ti, and Si-B-Ti, experimental data were not available
in the literature for Mo-Si-Ti and Si-B-Ti. Yang[35,38] began to
determine the phase equilibria of the two later ones experi-
mentally and at the same time to develop descriptions for the
other two ternaries, i.e., Mo-Si-B[39] and Mo-B-Ti,[36] using
experimental data available in the literature and the descrip-
tions of the constituent binaries. She subsequently developed
descriptions for the other two ternaries Mo-Si-Ti[35] and
B-Si-Ti[38] when her experimental data became available. It
has been a common practice to obtain a thermodynamic
description of a quaternary system when such descriptions
for the lower systems, i.e., ternaries and binaries, are available
by extrapolation without further experimentation.[46,53] In many
cases, this approach works quite well. However, a closer
examination of the phase equilibria of the constituent ternar-
ies of Mo-Si-B-Ti indicates that T2 is likely to dissolve large
amounts of Ti, thus extending its compositional stability into
the quaternary space. In order to accommodate the multiphase
equilibria involving T2 in the quaternary space, optimization
of the thermodynamic model parameters of this phase was nec-
essary. In the following, I will present the strategy used to
rapidly establish a description of this quaternary using a min-
imum amount of experimental effort.

First, a preliminary thermodynamic description of the Mo-
Si-B-Ti quaternary system was developed based on thermo-
dynamic descriptions of the four constituent ternaries[35,36,38,39]

as well as the thermodynamics of T2 in quaternary space.
The focus of obtaining a thermodynamic description of Mo-
Si-B-Ti was to model the thermodynamics of the T2 phase,
which will be discussed in detail later. From this preliminary
thermodynamic description, a 1600 °C isothermal tetrahe-
dron of Mo-Si-B-Ti was calculated and a schematic repre-
sentation of these equilibria in the �-(Mo,Ti)-rich region is
shown in Figure 11, with �-(Mo, Ti) denoted by its crystal
structure, bcc. As shown in this figure, there are four ternary
isotherms. The left face of this tetrahedron gives the Mo-Si-
B equilibria. The two three-phase equilibria of interest are
bcc � A15 � T1 and A15 � T1 � T2. Phase equilibria of
Mo-Si-Ti are shown on the bottom face of the tetrahedron.
For the purposes of clarity, the phase equilibria for the remain-
ing two ternaries are not shown since they are of no interest
in describing the bcc-rich phase equilibria in this quaternary
region. However, it is important to note that a correspond-
ing A15 phase is not stable in the Si-Ti binary. Yet, there
are extensive solubilities of the unstable Ti3Si compound in
the A15 phase. In a similar manner, the intermediate phase
T1(Ti5Si3)(D8m) is not stable in binary Si-Ti but also has
extensive solubilities in T1(Mo5Si3). The stable Ti5Si3 com-
pound in binary Ti-Si has the D88 structure. The (Mo5Si3)(D88)
compound, unstable in binary Mo-Si, also dissolves in
Ti5Si3(D88) to a large extent. It is worth noting that exten-
sive homogeneity ranges in these metal silicides occur only
along the direction parallel to binary Mo-Ti, meaning there
are mutual substitutions of the Mo and Ti atoms on the metal
sublattice. This evidence led to the obvious conclusion that

the Ti atoms must also substitute for Mo on the metal sub-
lattice of the T2 phase. This T2 phase can be represented by
the formula (Mo,Ti)5SiB2.

[36,37] The Gibbs energy of formation
of Mo5SiB2, one of the two end members of the T2 solution
phase, can be directly obtained from the thermodynamic
description of Mo-Si-B.[39] An initial value of the Gibbs
energy of the other end-member Ti5SiB2, unstable in Ti-Si-B,
was estimated to be negative but less negative than that of
the stable phases. In addition, ideal entropy of mixing was
assumed between Mo and Ti on the metal sublattice in order
to obtain a preliminary model for the T2 phase.

The phase equilibria of the five phases, bcc, A15, T1, T2,
and D88, calculated from this preliminary thermodynamic
description as presented previously, are shown schematically
in Figure 11. These equilibria then served as a guide to make
a minimum number of alloys for experimental determina-
tions. The calculation shows the existence of 3 four-phase
equilibria among these phases, bcc � A15 � T2 � T1 (I),
bcc � T2 � T1 � D88 (II), and bcc � T2 � D88 � TiB (III),
respectively. From the Mo-Si-B ternary to the four-phase
equilibria (III), three “windows” exist and are separated by
the two four-phase equilibria (I) and (II). In the left-hand
window, there are 2 three-phase equilibria, bcc � T1 � T2
and A15 � T1 � T2. There is one three-phase equilibrium,
bcc � T2 � T1, in the middle window, and another one,
bcc � T2 � D88, in the third window. Based on this pre-
liminary calculation, three alloy compositions, Mo-11Si-19B-
10Ti, Mo-11Si-19B-20Ti, and Mo-11Si-19B-30Ti, were
selected in such a way that the first alloy composition was
located in the calculated three-phase bcc � A15 � T2 field,
the second in bcc � T1 � T2, and the third in bcc � D88 �
T2. All alloy compositions refer to atomic percentages. These
three alloys were studied experimentally either to verify or
to improve this preliminarily used thermodynamic descrip-
tion, and the experimental details were given elsewhere.[37]

The experimental results showed the existence of bcc �
A15 � T2 in the first sample consistent with the calculation.
However, the experimental results also show the same three-
phase equilibrium in the second sample, indicating the cal-
culated four-phase equilibrium (I) should have been richer
in Ti-Si-B. The three-phase equilibrium of bcc � T2 � D88

found in the third sample is consistent with the calculation.
An improved description was developed using the newly
obtained experimental results focusing primarily on the model
parameters of the T2 phase. The newly calculated phase
equilibria using the improved description were next used to
identify six additional alloys for further experimental inves-
tigations. The compositions of the first two alloys were in
the compositional vicinity of the newly calculated four-phase
equilibrium (I), those of the next two were in that of the newly
calculated four-phase equilibrium (II), and those of the last
two were in that of the newly calculated four-phase equilib-
rium (III). These six alloy compositions were Mo-28.5Ti,
Mo-32.5Ti, Mo-35Ti, Mo-37.5Ti, Mo-55Ti, and Mo-57.5Ti
with 18 mol pct Si and 9 mol pct B in each alloy, respectively.
The experimental results from the second group of alloys as
well as those in the first group, a total of nine, were then used
to develop another improved and final thermodynamic
description.

In order to test the predictive capability of the current
thermodynamic description, it was decided to compare the
calculated phase equilibria with the experimental results
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Fig. 12—A calculated isopleth of Mo-Si-B-Ti with the compositions of Si
and B held constant at 18 and 9 mol pct, respectively. The solid circle
refers to the alloy composition annealed at 1600 °C for 150 h and 1200 °C
for 50 days, respectively. The compositions are given in mole fractions.

obtained from three additional samples. The arbitrarily
selected compositions of these samples lay within the narrow
compositional region between the 2 four-phase equilibria (I)
and (II). They were Mo-10Si-10B-25Ti, Mo-10Si-10B-
27.5Ti, and Mo-10Si-10B-30Ti. It is important to point out
that the experimental results obtained from these three alloys
were used only for comparisons between calculation and
experimentation, not for optimization. If the calculated results
are in good agreement with experimental data from the third
group of alloys, the current thermodynamic description is
believed to be a reliable knowledgebase for predicting and
understanding the phase equilibria among the bcc, T2, A15,
T1, and D88 phases.

A thorough experimental investigation was carried out
for all alloy samples using powder X-ray diffraction (XRD)
analysis, Electron probe microanalysis (EPMA), electron
backscatter diffraction (EBSD) analysis, and scanning elec-
tron microscopy (SEM) with backscattered electron (BSE)
imaging analysis. Comparisons between experimental and
calculated results for all investigated alloys were in good
agreement, as presented elsewhere.[37] I will present here only
the results obtained for one typical sample, Mo-18Si-9B-
32.5Ti. As shown in Figure 12, a calculated isopleth expressed
in terms of T as a function of xTi with values of xSi � 0.18
and xB � 0.09, the composition of this alloy lies in the four-
phase equilibrium of T1 � T2 � bcc � D88 at 1600 °C and
1200 °C respectively. The BSE images of this sample heat
treated at both temperatures are shown in Figures 13(a) and
(b). The EPMA and EBSD results show the presence of T1 �
T2 � bcc � D88 with the bcc phase exhibiting the bright-
est contrast, the T2 phase light gray, the T1 phase dark gray,
and the D88 phase black. The phase fractions of each phase
(in mole percentage) vs T were calculated under global equi-
librium and shown in Figure 14. This kind of plot gives infor-
mation not only on the phases in equilibrium with each other
but also their amounts. It is evident from this figure that the
major phase in the Mo-18Si-9B-32.5Ti is T2 and the minor
phase D88 with the amounts of T1 and bcc somewhere in

Fig. 13—(a) A BSE image of Mo-18Si-9B-32.5Ti annealed at 1600 °C for
150 h. (b) A BSE image of Mo-18Si-9B-32.5Ti annealed at 1200 °C for
50 days. The composition of the alloy is given in mol percent.

Fig. 14—Calculated phase fractions (in mole fractions) vs temperature for
the Mo-18Si-9B-32.5Ti alloy with the compositions given in mol percent.

between these two. These predictions are qualitatively con-
firmed by the BSE images shown in Figures 13(a) and (b),
respectively. It should be stated that the crystal structures of

01-E-TP-05-340B-Lect  1/11/06  10:39 AM  Page 19



20—VOLUME 37B, FEBRUARY 2006 METALLURGICAL AND MATERIALS TRANSACTIONS B

phases. Therefore, only the Ti concentrations of each phase
are listed in Table II. The B and Si concentrations were listed
for each phase right below the phase name in the same table.
The calculated phase compositions, also given in this table,
are in accord with the experimentally measured values.

On the basis of the phase equilibrium data alone, the fol-
lowing five multiphase equilibria, bcc � T2 � A15, bcc �
T2 � T1, bcc � T2 � D88, bcc � T2 � A15 � T1, and
bcc � T2 � T1 � D88, offer the potentials to exhibit desir-
able mechanical properties since they all contain a ductile
metallic phase with strong intermetallic compounds. In addi-
tion, the 2 three-phase equilibria consisting of bcc either with
T2 and T1 or with T2 and D88 should also exhibit favorable
oxidation resistance due to the higher Si concentrations in
the silicides. The phase diagrams of Mo-Si-B-Ti calculated
in this study, especially the following multiphase equilibria,
bcc � T2 � A15, bcc � T2 � T1, bcc � T2 � D88, bcc �
T2 � T1 � A15, and bcc � T2 � T1 � D88, offer wide
processing windows to attain optimal microstructures and
ultimately the desired mechanical performance. Since the

(a) (b)

(c) (d )

Fig. 15—EBSD patterns of the phases in the Mo-18Si-9B-32.5Ti sample (composition given in mol percent) with the unindexed patterns on the left and
the indexed patterns on the right: (a) T1, (b) T2, (c) bcc, and (d) D88.

Table II. Comparisons between the Calculated and the EPMA Measured Values for the Compositions of Ti in Mol Fractions
in Each of the Four Phases for the Alloys Annealed at 1600 °C for 150 Hours and 1200 °C for 50 Days

T2 Bcc T1 D88

Si � 0.11 to 0.124 Si � 0.016 to 0.03 Si � 0.35 to 0.365 Si � 0.35 to 0.37
Samples Annealing T B � 0.235 to 0.255 B � 0 to 0.01 B � 0 to 0.01 B � 0 to 0.01

Mo-18Si-9B-32.5Ti 1600 °C 0.265 	 0.02 0.27 	 0.01 0.423 	 0.02 0.492 	 0.01 exp
0.248 0.278 0.416 0.502 cal

1200 °C 0.26 	 0.01 0.28 	 0.02 0.43 	 0.02 0.50 	 0.02 exp
0.249 0.261 0.427 0.521 cal

the phases were identified by XRD. However, it was found
that the ternary T1 and D88 phases were difficult to discern
by EPMA, since their atomic weights are very close to each
other in view of the large mutual solubilities of the binary
compounds. Furthermore, since they usually presented as
minor phases (with small volume fractions) in the microstruc-
ture, XRD is incapable of differentiating them. However,
EBSD was used to identify the crystal structures of these two
ternary phases in this alloy, as shown in Figures 15(a) through
(d). The EPMA measurements on phase compositions of
the Mo-18Si-9B-32.5Ti alloy annealed at 1600 °C for
150 hours and 1200 °C for 50 days are listed in Table II.
The concentrations of B and Si were relatively independent
of the bulk alloy compositions. Taking the T2 phase as an
example, the B and Si concentrations for all samples are 23.5
to 25.5 mol pct and 11 to 12.4 mol pct, respectively, which
can be considered as constant values in view of experimen-
tal uncertainties. The equilibrium concentrations of Mo and
Ti in the T2 phase vary with the overall compositions of the
samples. This is also true for the bcc, T1, A15, and D88
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calculated phase diagrams far away from the Mo-Ti–rich
region were extrapolated from the constituent ternary sys-
tems, it is expected that the topological features of the cal-
culated phase diagrams are correct not necessarily the
compositions of the co-existing phases in equilibrium with
each other. Nevertheless, the calculated phase equilibria could
offer an intelligent guide for identifying a few key alloy com-
positions for further experimental studies. In addition to new
phase equilibria found in the Mo-Ti-Si-B system, another
important message conveyed here is that thermodynamic
modeling provides a powerful tool for studying and visual-
izing the multiphase equilibria, which otherwise would be a
rather challenging task indeed.

B. Materials Research/Development and Manufacturing:
(2) Calculated Phase Diagrams of Al-Cu-Ni-Ti-Zr as a
Guide to Identify Optimum Addition of Ti to Improve the
Glass-Forming Ability of a Known Glass-Forming
Quaternary (Al,Cu,Ni,Zr) Alloy

As presented in Section II, the formation of a binary eutec-
tic is a result of the greater stability of the liquid versus those
of the competing solids. As shown in Figure 2(c), there are
three phase diagrams: (1) the cigar-shaped liquidus/solidus
phase boundaries are obtained when both the liquid and
solid behave ideally; (2) a eutectic diagram is formed when
L0 (L) � 0 and L0 (S) � 50,000 J mol�1; and (3) a deep eutec-
tic is formed when L0 (L) � �50,000 mol�1 and L0 (S) �
50,000 J mol�1. This means that when L0 (L) � 0 and L0 (S) �
50,000 J mol�1, the liquid is more stable than the solid phase
and a eutectic is formed (case 2), i.e., the stability of the liq-
uid extends to lower temperatures. In the third case (3), when
L0 (L) � �50,000 mol�1, meaning the liquid in this case
becomes even more stable than that in case (2), a deep eutec-
tic is formed. The stability of this already stable liquid is
extended to a temperature lowered by additional 815 K. Since
the viscosity of a liquid increases with decreasing temperature
(with a corresponding decrease in diffusivity), it becomes kinet-
ically favored for this liquid to form glass upon cooling. More-
over, it is known that glasses normally form over a range of
composition in the compositional vicinity of the eutectic, but
require larger undercooling at compositions away from the
eutectic composition. In the following, I will give one exam-
ple to illustrate the use of a calculated isopleth of a series of
quinary (Zr,Cu,Ni,Al,Ti) alloys to identify the optimum com-
position for the best GFA. This isopleth is a two-dimensional
representation of T vs the mol fraction of Ti, xTi, from 0 to
0.15 with constant compositions of xCu � 0.313, xNi � 0.04,
and xAl � 0.085.

Recent success in synthesizing centimeter-sized Cu- and
Fe-based bulk metallic glasses (BMGs) using microalloying
of Y[54,55] indicates that this success is due to decreases in
the liquidus temperature with Y additions. This observation
is consistent with the previous discussion. More recently,
Ma et al.[56] demonstrated that this indeed is the case taking
a quaternary glass-forming alloy Zr56.28Cu31.3Ni4.0Al8.5 as a
model example with additions of Ti. As shown in Figure 16,
the liquidus temperature from the quaternary alloy Zr56.28

Cu31.3Ni4.0Al8.5, i.e., without Ti, decreases rapidly, reaching
a minimum at xTi � 0.049 and then increases again. These
data suggest that the GFA of these alloys should increase
with the addition of Ti, reaching a maximum at 4.9 mol pct

Ti, and decrease again. I will present subsequently the experi-
mental results obtained by Ma et al.[56] to show that this is
indeed the case.

A series of Zr56.28-cTicCu31.3Ni8.7Al8.5 alloys with values
of c varying from 0 to 10 mol pct Ti, were prepared by
Ma et al. with the expectation that the alloy with 4.9 mol
pct Ti would exhibit the highest GFA. The quaternary
Zr56.28Cu31.3Ni4.0Al8.5 alloy was found to be a bulk glass-
forming alloy based on the calculated low-lying liquidus
surface of the quaternary Zr-Cu-Ni-Al system.[57] Alloy ingots
with the nominal compositions Zr56.28-cTicCu31.3Ni8.7Al8.5

(c � 0 to 10.0 mol pct) were prepared by arc melting pieces
of high-purity metals, with Zr being 99.95 wt pct and the
rest Ti, Cu, Ni, and Al being 99.99 wt pct, in a Ti-gettered
argon atmosphere. Each of the ingot samples was remelted
several times to assure good mixing and then suction cast
(or drop cast), under a purified Ar (or He) atmosphere, into
a copper mold with an internal cylindrical cavity with diam-
eters ranging from 1 to 5 mm (or 6 to 14 mm). The amor-
phous nature of the as-cast rods was examined by analyzing
the central part of their cross sections using XRD with a
Cu K� source and SEM in the backscattered electron imag-
ing (BEI) mode. The glass transition and crystallization
behaviors of these alloys upon reheating were character-
ized using a Perkin-Elmer DSC7 (differential scanning
calorimeter) (Wellesley, MA) at a heating rate of 20 K/min.

As shown in Figure 17(a), the GFA of the quaternary base
alloy increases with the addition of Ti in terms of the criti-
cal diameters of amorphous rods formed, reaching a maxi-
mum at 4.9 mol pct Ti, and then decreases again. At 10 mol
pct Ti, it was no longer possible to achieve bulk glass for-
mation. Also shown in Figure 17(b) are the 6-mm-diameter
glass rod formed by casting the base alloy and the 
14-mm-
diameter glass rod formed with the alloy containing 4.9 mol
pct Ti. Since the technique used by Ma et al.[56] is not capa-
ble of casting a rod larger than 14-mm diameter, it was con-
cluded that larger diameters than 14 mm could be obtained.

Fig. 16—A calculated isopleth of the quinary Al-Cu-Ni-Ti-Zr system
expressed in terms of T as a function of the mol percent of Ti with the
compositions of Cu, Ni, and Al held constant at 31.3, 4, and 8.5 mol pct,
respectively. The composition of Ti at the origin is 0, corresponding to
Zr56.2Cu31.3Ni4.0Al8.5. The shade area denotes the experimentally observed
bulk glass-forming range.
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(a)

(b)

Fig. 17—(a) Critical diameters of the cast glassy rods as a function of the Ti
concentration in mol percent. (b) Pictures of the 6-mm-diameter glass rod cast
from the base alloy and of the 14-mm-diameter glass rod cast from the 4.9 mol
pct Ti alloy, marked A*. The inset in (b) shows, with reduced image size, an
arc-melted 20-g button used for casting the glass rod of alloy A*.

The inset in Figure 17(b) shows an arc-melted 20-g-button
used for casting the amorphous rod of the alloy A*. These
results are consistent with the liquidus temperatures shown in
Figure 16. This is anticipated since a minimum amount of
undercooling is required at the lowest temperature.

Figure 18 shows the XRD patterns obtained from the as-cast
rods of four representative alloys, i.e., Zr56.2-cTicCu31.3Ni4.0Al8.5

with c � 0, 1.5, 4.9, and 6.5 mol pct, respectively. They are
denoted as the base alloy, A1, A*, and A3, respectively. The
base alloy exhibits two typical amorphous halos in its 6-mm-
diameter sample. On the other hand, the 7-mm-diameter rod
shows two crystalline peaks due to the presence of CuZr2 and
NiZr2, respectively, indicating that the critical casting diam-
eter for this alloy is �6 mm. The diffraction patterns of the
cast 10-mm-diameter rod, from the alloy containing 1.5 mol pct
Ti and denoted as A1, also exhibit two similar crystalline
peaks superimposed on the main halo. These peaks show that

this rod is only partially glass. However, it is abundantly clear
that there are no crystalline peaks discernible in the XRD pat-
terns of alloy A* obtained from its 14-mm-diameter sample.
This means that the rod is a monolithic glass. For alloys
containing more than 6.5 pct Ti such as A3, their XRD pat-
terns reveal even more and sharper peaks, indicating the pres-
ence of a considerable amount of crystalline phases in their
10-mm samples. However, with increasing Ti contents beyond
this critical composition of 4.9 mol pct Ti, the critical cast-
ing diameter diminishes rapidly reducing to close to nothing
when the Ti content reaches 10 mol pct.

The DSC curves of the cast amorphous rods presented in
Figure 19 exhibit endothermic inflection characteristics of a
glass transition at a temperature, Tg, ranging from 656 to
675 K, followed by one or two pronounced exothermic peaks

Fig. 18—X-ray diffraction patterns obtained from the as-cast rods with
diameters of 6 and 7 mm for the base alloy (Zr56.2Cu31.3Ni4.0Al8.5), 10 mm
for alloy A1 (containing 1.5 mol pct Ti), 14 mm for alloy A* (containing
4.9 mol pct Ti), and 10 mm for alloy A3 (containing 6.5 mol pct Ti).

Fig. 19—DSC traces of a series of alloys Zr56.2-cTicCu31.3Ni4.0Al8.5 (c � 0,
1.5, 3.5, 4.9, 6.5, 8.0 in mol pct), with the specimens being taken from
2-mm as-cast rods of these alloys. The upward arrows refer to the glass
transition temperatures (Tg), and the downward ones denote the onset crys-
tallization temperatures (Tx).
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corresponding to crystallization events. Values of Tx and Tg

for each amorphous alloy obtained from the DSC traces with
Tx being the onset crystallization temperature are summarized
in Table III. The thermodynamically calculated liquidus tem-
peratures Tl are also given in this table as well as the fre-
quently used GFA criteria, �Tx � (Tx � Tg),

[58] Trg,
[59] and

�.[60] It is found that the value of Trg peaks at 4.9 mol pct Ti,
which corresponds exactly to the best glass-forming alloy,
i.e., A*. This is not surprising. Since values of Tg are insen-
sitive to alloy composition, the shape of the compositional
dependence of the reduced-glass temperatures is governed by
the sharp decreases in the liquidus temperatures. On the other
hand, the experimental measured results appear to be some-
what inconsistent with the other two criteria, i.e., �Tx and �.

Except for the aforementioned alloy series (A), Ma et al.[56]

also calculated the isopleths in terms of T vs the compositions
of Cu, Ni, Al, and (Zr0.5628Cu0.313Ni0.040Al0.085), respectively.
In other words, each of the elements of Cu, Ni, Al, or
(Zr0.5628Cu0.313Ni0.040Al0.085) was replaced with Ti. First, the
experimentally determined values of the GFA are consistent
with the calculated liquidus temperatures. Moreover, the min-
imum liquidus temperature calculated at 4.9 mol pct Ti when
replacing Zr is by far the lowest. One can thus conclude that
the strategy using the thermodynamically calculated liquidus
temperatures has been proved to be robust in locating the
bulkiest BMG former with optimum minor-alloying additions.

C. Materials Research/Development and Manufacturing:
(3) Calculated Solidification Paths as a Guide to
Minimize Liquation Cracking in Aluminum Welds

Metzger carried out an extensive investigation on liqua-
tion cracking in aluminum welds and found that this type
of cracking in the 6061 alloy welds depended on the fillers
used.[61] In other words, when a class of filler with a spe-
cific alloy composition is used, liquation cracking does not
occur. Subsequently, several other researchers had extended
his investigation to other aluminum alloys such as 6063 and
6082 and found similar results.[62–66] More recently, Huang
and Kou[67,68] proposed a mechanism to explain the reason
for liquation cracking, as shown in Figure 20. The top por-
tion of this figure shows a schematic diagram of joining two
pieces of Al metals with a weld pool in-between them. The
partially melted zone (PMZ) is a portion of the base metal
experiencing partial melting during welding, and the weld

pool is a mixture of the base metal with added filler at
approximately 65 pct dilution. The interface, between the
PMZ and the weld pool, referred to as the fusion boundary,
is enlarged in the lower part of Figure 20. Huang and Kou
postulated that when the fractions of solids in the weld pool
during the later stage of solidification are less than those in
the PMZ, liquation cracking should not occur since the base
metal is stronger. On the other hand, if the reverse were
the case, liquation cracking would occur because the solid-
ifying weld metal is stronger and pulls away from the PMZ,
causing cracking. Huang and Kou[67,68] calculated the frac-
tions of solids in the PMZ and the weld pool using PAN-
DAT[22] with a thermodynamic database for multicomponent
Al alloys.[29] The results presented in Figure 21 indicate that
the calculated fractions of the solid denoted as fS in the PMZ
according to the Scheil model are larger than those of the
weld pool when the 4043 filler is used. The microstruc-
tures presented in Figure 22 show that this is indeed the
case. Chang et al. had carried out similar calculations for
other Al alloys and reached the same conclusion.[33]

D. Materials Research/Development and Manufacturing:
(4) Synthesis of Precursor Amorphous Alloy Thin Films
of Oxide Tunnel Barriers Used in Magnetic Tunnel
Junctions

I will present in this section how computational thermody-
namics can also facilitate processing innovation for synthesizing

Table III. Glass-Forming Ability and Thermal Properties of a Series of (Zr, Ti, Cu, Ni, Al) Alloys (Denoted as Series A)
Whose Compositions are Obtained by Replacing Zr with Ti in a Base Alloy Zr56.2Cu31.3Ni4.0Al8.5

Alloys Ti Replacement (Mol Pct Ti) dmax (mm) Tl (K) Tg (K) Tx (K) Tx � Tg (K) Tg/Tl Tx/(Tg � Tl)

Base alloy 0.0 6 1104 675 761 86 0.611 0.428
A1 1.5 8 1073 673 762 89 0.627 0.436
A2 3.5 11 1030 674 746 72 0.654 0.438
A* 4.9 
14 1002 669 724 55 0.668 0.433
A3 6.5 8 1018 668 717 49 0.656 0.425
A4 8.0 3 1029 659 713 54 0.640 0.422
A5 9.0 1 1035 656 711 55 0.634 0.420
A6 10.0 0 1052 — — — — —

dmax: experimentally attained maximum diameter of glassy rods using copper mold casting.
Tl: the liquidus temperature calculated thermodynamically.
Tg: the glass transition temperature measured using DSC.
Tx: the onset temperature of crystallization measured using DSC.

Fig. 20—A schematic diagram illustrating the mechanism of liquation crack-
ing in full-penetration aluminum welds.[67]
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Fig. 21—The T vs fS curves calculated by Huang and Kou[67] for the base
metal or PMZ and the weld pool using PANDT[22] and an aluminum ther-
modynamic database[29] according to the Scheil model. The base metal is
6061 and the weld pool consists of the base metal with either filler 4043
or 5356 with 65 pct dilution. The base metals fS are greater than the weld
pools fS with 4043 filler during the later stage of solidification (shown in
the inset), and no liquation cracking occurs. The compositions of the base
metal 6061 are Al-1Mg-0.6Si, filler 5356 Al-5Mg, and filler 4043:Al-5Si,
all in weight percent.

Fig. 22—Microstructures of the solidified weld pool and PMZ (base metal)
near the fusion boundary (the top figure with low magnification and the
lower one with higher magnification).

precursor amorphous alloy thin films of oxide tunnel barri-
ers used in magnetic tunnel junctions (MTJs). These junc-
tions are being considered as sensitive magnetic sensors and
nonvolatile storage cells in magnetic access memories.[69–72]

A MTJ consists of two ferromagnetic metal electrodes (e.g.,
Co) separated by a thin tunnel barrier such as aluminum
oxide with a thickness around 2 nms. One of the major chal-

Fig. 23—Schematic diagrams of the bilayer structures with the (Al, Zr)
layer in (a) crystalline state and (b) amorphous state; (c) the bulk Gibbs
energy vs the composition of Co of the bilayer in (a) and (b) for the case
that (Al, Zr)-cryst is more stable than (Al, Zr)-am. The symbols l and h
refer to the length and height, respectively. The Co layer is in the crys-
talline state.

lenges is to fabricate MTJs with both high tunneling mag-
netoresistance (TMR) and low product of junction resistance
and area (RA) for practical applications.[73] The quality of
a tunnel barrier such as aluminum oxide plays a critical role
in the performance of such a device.[74,75] The current prac-
tice is to obtain an aluminum oxide barrier by oxidizing a
thin crystalline Al layer.[76–81] However, since polycrystalline
aluminum films have grain boundaries, the thin oxide bar-
rier formed tends to exhibit nonuniform surfaces as well as
other types of defects. An alternative approach is to oxi-
dize an amorphous thin film without such boundaries of an
alloy such as (Al,Zr). The oxide films thus formed tend to
exhibit smooth interfaces with fewer defects, thus leading
to higher performance of the MTJs, i.e., with greater TMR.[74]

Since an amorphous phase was found in the Al-Zr sys-
tem with different alloy preparation methods,[82–87] Yang
et al.[88] adopted this binary as a model system for their ther-
modynamic and experimental study. They presented a ther-
modynamic formulation to predict alloy compositions that
show tendencies to form amorphous thin films when fabri-
cated by a rapid quenching process such as sputter deposi-
tion. The TEM and XRD were used to confirm the formation
of amorphous alloy films. Based on the methodology pro-
posed by Yang et al., other alloys with higher amorphous-
forming ability could be obtained as additional candidates
for precursor metals of oxide tunnel barriers.

Figures 23(a) and (b) show two bilayered structures, one
with an alloy of (Al,Zr) in the crystalline state on top of a
thin layer of Co and the other with the same alloy in the
amorphous state. The dimensions of the bilayered structure
are given in these figures, i.e., , ham, and hCo,
with the subscripts denoting crystalline and amorphous,
respectively. The total Gibbs energy of such a bilayer struc-
ture is taken to include three parts: bulk Gibbs energy, inter-
facial energy, and surface energy. The bulk Gibbs energies
of these two (Co)/(Al,Zr) bilayer structures are shown
schematically in Figure 23(c) as a function of the Co com-
position for the structure given in Figures 23(a) and (b),
respectively. The assumption made is that all the intermetallic
compounds normally stable in Al-Zr do not form due to
kinetic constraints when using sputter deposition to fabri-
cate these thin metallic films. In other words, the sputter-
deposition process is so rapid that nucleation of these
intermetallics becomes unfavorable. In deriving their thermo-
dynamic model, Yang et al.[88] considered only the existence

�cryst, �am
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of amorphous and crystalline phases of (Al,Zr). Moreover,
the Gibbs energy curves of (Co), (Al,Zr)-am, and (Al,Zr)-
cryst are represented by sharp curves at the two ends of the
diagram because the mutual solubilities between Co and
(Al,Zr)-am or (Al,Zr)-cryst are negligible at low tempera-
tures (�500 °C). The tangent line between Co and (Al,Zr)-
cryst represents the metastable phase equilibrium between
Co and (Al,Zr)-cryst. Similarly, the tangent line between Co
and (Al,Zr)-am represents the metastable phase equilibrium
between Co and (Al,Zr)-am. The Gibbs energy of the amor-
phous phase is approximated to be that of the undercooled
liquid and the volume Gibbs energies of (Al,Zr)-cryst can
be either lower or higher than those of the amorphous phase
depending on which state is more stable. Figure 23(c) shows
the Gibbs energies of a mixture of (Al,Zr)-am and (Co) as
well as that of (Al,Zr)-cryst and (Co) as a function of com-
position of Co at a constant T. For the case shown in this
figure, the Gibbs energy of the two-phase mixture consisting
of (Al,Zr)-am and (Co) is higher than that of (Al,Zr)-cryst
and (Co). At a specific composition of xCo, the Gibbs energy
difference between the two states is shown in Figure 23(c)
as �Gcryst:am. The symbol �Gcryst:am denotes the Gibbs
energy of transformation from a crystalline state for an
(AlyAl,ZryZr) alloy to an amorphous state of an (AlyAl,ZryZr)
alloy since (Co) in the structures shown in Figures 23(a) and
(b) remains in the crystalline state. The symbols yAl and yZr

denote the mole fractions of Al and Zr in the binary (Al,Zr)
alloys. This transformation energy is the barrier to be over-
come for the formation of the amorphous state. The analyt-
ical equation of �Gcryst:am at the as-deposited temperature
is described as[88]

[2]

In Eq. [2], xCo is the overall composition of Co in the bilayer
structure and Tas the film deposition temperature; and

have been defined previously. Since the (1 � xCo) term
is always positive and does not affect the sign of �Gcryst:am,
the Co layer in the model can be replaced by other mate-
rials without changing the validity of the conclusions. The
terms and refer to the transition temperatures
from the pure crystalline Al and Zr to their pure liquid,
respectively. Similarly, and repre-
sent the enthalpies of fusion of Al and Zr at their respec-
tive melting temperatures. The and denote
the excess Gibbs energies of the (Al,Zr) alloys exhibiting
the amorphous and crystalline state, respectively. In order
to evaluate the energy barrier from the (Al,Zr) crystalline
to (Al,Zr) amorphous structure, a prerequisite is to know
which crystalline structure is the most stable structure. Based
on the Gibbs energy of solution phases calculated from
the thermodynamic description of the Al-Zr system devel-
oped by Wang et al.,[89] the Gibbs energy of the (Al,Zr)
solution with the fcc structure was found to be the most
stable among the common crystal structures, consistent with
the experimental data to be presented later. Using the SGTE
lattice stabilities of Al and Zr[4] and the excess Gibbs ener-
gies of the undercooled liquid (Al,Zr)-am and the fcc (Al,

exG(Al,Zr)
crystexG(Al,Zr)

am

�HZr
cryst→am�HAl

cryst→am

Tm,Zr
crystTm,Al

cryst

yZr
am

yAl
am

� yZr
am 0�HZr

fusa1 �
Tas

Tm,Zr
crystb � 1exG(Al,Zr)

am � exG(Al,Zr)
cryst 2

�G(Al,Zr)
cryst→am

(1 � xCo)
� yAl

am 0�HAl
fusa1 �

Tas

Tm,Al
crystb

Zr)-cryst phases,[89] the values of �Gcryst:am vs the com-
position of Zr in the top layer are shown in Figure 24. It
is evident from the values of �Gcryst:am shown in this fig-
ure that in the midpart of the diagram, amorphous alloys
are likely to form during sputter deposition. It is indeed
somewhat surprising that in view of the simplicity of the
thermodynamic formation, the calculated compositions of
the (Al,Zr) alloys for amorphous phase formation are in
reasonable agreement with the experimental data presented
in Figure 25. These data were obtained from TEM micro-
graphs and SAD patterns of cosputtered deposited alloy
films.[88] As shown in this figure, alloys with compositions
denoted as A and B exhibit crystal grains with dotted SAD
patterns. However, as the composition approaches point
C, most of the grains disappear in the micrograph and mul-
tiple diffraction rings fade with a halo ring becoming clear
in the SAD patterns. This suggests a transitional region from
a polycrystalline structure to an amorphous state, in accord
with the calculation. With increases in the Zr concentra-
tions, the Al-Zr alloy films appear to be amorphous, which
can be seen from the single diffuse ring in SAD patterns
and the typical amorphous micrographs[90] (defocused to
enhance the contrasted) at composition points D, E, and F.
At point G, both the micrograph and the SAD pattern expe-
rienced an appreciable change from those of point F, sug-
gesting the film transforms from an amorphous state to a
crystalline structure again. At point H, i.e., pure Zr, a poly-
crystalline fcc structure can be observed from both the
micrograph and SAD pattern, indicating that the fcc Zr exist.
Thicker films with typical compositions were deposited on
glass for the XRD structure characterization, as shown in
Figure 26. In the three XRD diffraction patterns, the big
humps at about 24 deg result from the glass substrate, which
was adopted to exclude any possible peaks from the sub-
strate. This exercise indicates that the thermodynamic
approach presented here can be used to make similar pre-
dictions for many other alloys and can identify alloy com-
positions for forming amorphous phases via sputter
deposition, provided thermodynamic descriptions of the
alloys in question are available.

Fig. 24—The Gibbs energy difference between the fcc-(Al, Zr) solution
and the amorphous (Al, Zr) phase vs the composition of Zr in mole frac-
tions. Co-sputter-deposited alloys were made at the compositions denoted
as A, B, etc. to H.
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E. Materials Research/Development and Manufacturing:
(5) Certification of Titanium Alloys for Commercialization

In addition to playing an essential role in materials research
and materials and processing development as noted previ-
ously, computational thermodynamics is beginning to play an
important role in manufacturing. For instance, when a man-
ufacturer sells products made of Ti6Al4V, it is necessary to
certify the beta transus, i.e., the temperatures of the transfor-
mation of Ti6Al4V from the high-temperature bcc structure,
or beta (�), to the low-temperature hcp structure, or alpha (�).
It is noteworthy to point out that the 6 wt pct Al and 4 wt pct
V are the nominal compositions. The actual compositions in
each batch of such alloys vary. In addition, there are always
minute amounts of other impurities. The current practice in
the titanium industry is that the metal supplier must carry
out experiments such as DTA to measure experimentally the
values of the transus for each batch of the metals sold. This
measurement takes time and is thus costly. As part of the
Manufacturing Affordability Initiative (MAI) of the Air Force
Materials and Manufacturing (Wright-Patterson AFB, OH),

Zhang[91] has been working with practicing engineers in the
titanium metal industry to calculate the beta transus of Ti6Al4V
using PANDAT[22] and PanTitanium.[92] Figure 27 shows a
convincing correlation of the thermodynamically calculated
beta transus values with those measured experimentally. It is
not difficult to conclude that the beta transus could one day
in the not too distant future be calculated thermodynamically
for certification instead of requiring experimental measure-
ment on individual batches of metals.

IV. RESEARCH

A. Use of CSA to Calculate Multicomponent Phase
Diagrams

Chang et al.[46] had recently highlighted the great achieve-
ment of the Calphad approach in obtaining a thermodynamic
description of a multicomponent alloy system based on
descriptions of the lower order systems, normally binaries
and ternaries. The lower order thermodynamic descriptions

Fig. 25—TEM micrographs and SAD patterns of co-sputter-deposited (Al, Zr) alloy films with compositions of A—0, B—7, C—22, D—33, E—39,
F—52, G—66, and H—100, all in mol percent of Zr.
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are developed in terms of known thermodynamic and phase
equilibrium data. The thermodynamic data are mostly
obtained experimentally, but some are obtained from the
first principles calculations, particularly in recent years. The
obtained thermodynamic descriptions for multicomponent
systems can subsequently be validated with only limited
experimental efforts, and experience has shown that the
descriptions so obtained are quite good in many cases.[53]

The exceptions are when a new phase forms in a quaternary
system or a ternary phase extends into the quaternary tem-
perature composition space, as is the case for the T2 phase
in Mo-Si-B-Ti presented earlier in this article. From this

description, it becomes possible to calculate a variety of
phase diagrams of this multicomponent system such as
isothermal sections, liquidus projection, isopleths, and sta-
bility diagrams, for teaching, research, and perhaps more
importantly for practical applications. However, since the
phase equilibria are governed by the relative Gibbs energies
of the phases involved, it is often found that neither the
experimentally measured nor first principles calculated ther-
modynamic quantities are sufficiently accurate to determine
which of the possible phase equilibria corresponds to the
stable one. Accordingly, experimental phase equilibrium data
will continue to be needed for the lower order systems,
particularly binaries, for the foreseeable future.

In spite of this great success of the Calphad approach in
obtaining thermodynamic descriptions of multicomponent sys-
tems, there is also a continuing need to improve thermodynamic
models, which, at present, are based on the Bragg–Williams
approximation.[93,94,95] The compound energy formalism
(CEF)[96] is one such model and is used nearly universally
within the Calphad community. This model is used for phases
that exist as disordered solutions at high temperatures but trans-
form to ordered structures with decreases in temperatures.
However, it has been well recognized that the formalism devel-
oped based on this approximation has difficulties in giving a
satisfactory description of the thermodynamics of these phases
due to the neglect of short-range ordering (SRO) in alloys at
high temperatures.[46,97–99] Thus, the traditional Calphad
approach does not lend confidence when extrapolating the ther-
modynamic descriptions of lower order systems to multicom-
ponent alloys when ordered phases are involved, such as the
technologically important Ni-based superalloys. Although the
cluster variation method (CVM) is known to give a much
improved description for the thermodynamics of the fcc
phases,[100,101,102] it is computationally demanding, particularly
for multicomponent alloy systems.[103,104] Accordingly, it
becomes highly desirable to have a suitable and computa-
tionally efficient model to describe the thermodynamics of
these phases, i.e., the fcc phase, an ordered fcc phase, L12,
with a stoichiometry of 0.75:0.25, and another ordered fcc
phase, L10, with a stoichiometry of 0.5:0.5. The cluster/site
approximation (CSA) also recognizes the existence of SRO
but is computationally less demanding.[103,104] Oates et al.[104]

demonstrated its suitability in accounting for the thermody-
namics of the fcc phases in prototype Cu-Au binary. Subse-
quently, Zhang et al.[105] and Zhang et al.[106] showed the
adequacy of the CSA to describe the thermodynamics of the
hcp phase in Cd-Mg and the fcc phases in Ni-Al, respectively.
More recently, Cao et al.[107,108] have successfully extended
the use of the CSA first to the prototype ternary Cu-Ag-Au
system and then to the real Ni-Al-Cr system. Prior to pre-
senting the research results, I will first introduce the basic ther-
modynamic formulation for the CSA.[46,104,107]

The Gibbs energy of the fcc-base phases is taken to con-
sist of two terms:[109]

[3]

The quantity GCI is the configurational independent term
that depends only on the mole fractions of the component
elements, i.e., xp, in the alloys but not on the details of the
sublattice species occupation . It is used to account for
such quantities as excess elastic energies due to atomic size

yp
(i)

G � GCI(xp) � GCD(yp
(i))

Fig. 26—The XRD results of three typical films on glass: pure Zr 260
nm, Al0.67Zr0.33 (in mole fractions) 300 nm, and pure Al 260 nm.

Fig. 27—A correlation of the thermodynamically calculated beta transus,
i.e., from the beta (bcc) phase to the alpha (hcp) phase using PANDAT
and PanTitanium with actual measured values for Ti6Al4V. The experi-
mental data were provided by D. Furrer, Ladish Co. (Cudahy, WI).

01-E-TP-05-340B-Lect  1/11/06  10:40 AM  Page 27



28—VOLUME 37B, FEBRUARY 2006 METALLURGICAL AND MATERIALS TRANSACTIONS B

mismatch, changing cell relaxation, and perhaps some other
excess excitation contributions. The term GCD is the con-
figuration-dependent term and is a function of the distribu-
tion of the species on the respective sublattices. For the
configuration-independent Gibbs energy GCI, we use Eq. [1].
The term for GCD according to the CSA[103–106] is

[4]

where 
 is the number of energetically noninterfering clusters
per site in the original CSA model[110] but can be treated as a
parameter in developing a thermodynamic description for an
alloy system, fi are the sublattice fractions, n is the size of the
cluster, and , defined earlier, are the species fractions of
component p on sublattice i. The ’s are the Lagrangian mul-
tipliers for the mass balance constraints in the Gibbs energy
minimization and, physically, are related to the species chem-
ical potentials of the lattice gas particles on the sublattice i.
The cluster partition function, �, is defined as

[5]

where �j is the cluster energy of a j-type cluster. The clus-
ter energy can usually be obtained from the pair exchange
energies, W, between components i and j.

For the prototype Cu-Ag-Au system, Cao et al.[107] com-
pared the CSA-calculated coherent phase diagrams with the
CVM-calculated ones by Kikuchi et al.[111] In other words,
the GCI term in Eq. [3] is taken to be zero and the CVM-
calculated one is taken to be the “real” one. The CSA-cal-
culated isotherms at high temperatures were found to be in
accord with the CVM-calculated ones.[111] However, a dis-
tinct difference between the CSA-calculated isotherm at 240 °C
and the CVM-calculated one was found, as shown in
Figures 28(a) and (b). As shown in these two figures, while
the CSA-calculated isotherm shows the existence of an island
of the (Cu,Ag)Au3 (L12) phase within the single-phase field
of fcc �-(Au,Cu,Ag), the original CVM-calculated isotherm
showed the absence of such an island. Professor C. Colinet
(LTPCM-ENSEEG, Saint Martin d’Heres, France) subse-
quently recalculated this isotherm using the CVM and indeed
found the existence of the L12 phase in the Au-rich corner,
as shown in Figure 28(b). In the original CVM calculation,
it was necessary to know the existence of this L12 phase in
the Au-rich corner so as to estimate initial values to calcu-
late the compositional stability of this phase. On the other
hand, Cao et al.[107,108] used the PANDAT software, which
is able to find the lowest Gibbs energy without starting points
and thus obtain the most stable phase(s) automatically.[23,112,113]

As noted above, 
 is the number of noninterfering clusters
per site in the original CSA model (Eq. [2]). A value of 
 � 1.42
was used for all three of the constituent binaries in the Cu-
Ag-Au calculations.[107] It is also worthwhile pointing out
that values of the pair exchange energies used in the CSA
are, on average, within 5 pct of those used in the CVM.

Following on from our success in extending the CSA from
binaries to calculating prototype ternary phase diagrams
for the Cu-Ag-Au system, Cao et al.[108] began to apply

w � aa
C n

j�1
exp c aa

n

i�1
mp

(i)b
j
� �j d

mp
(i)

yp
(i)

RTa
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p
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fi 
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(i) lnyp

(i)

GCD � zRTaa
C�1

p
a

n

i�1
yp

(i)
mp

(i) � lnwb � (nz � 1)

yp
(i)

this approximation to the fcc phases in the Ni-Al-Cr ternary
system adopting the binary CSA description of Zhang
et al.[106] for Ni-Al and obtained CSA descriptions for the
other two binaries. Figures 29(a) and (b) show the CSA-cal-
culated isotherm of Ni-Al-Cr at 1273 K and the CSA-cal-
culated �-solvus curves as a function of temperature along
with experimental data. These �-solvus curves were calcu-
lated at constant values of the mole fraction of Al varying
from 0.09 to 0.17. The calculated phase boundaries, as shown
in Figure 29(a), are consistent with the experimental data of
Ochiai et al.,[114] and the calculated solvus of the � phase
shown in Figure 29(b) is in accord with the data of Hong
et al.[115] Many other comparisons between calculation and
experimental data were made and the agreement is similar

(a)

(b)

Fig. 28—Calculated coherent isotherms of Cu-Ag-Au at 240 °C: (a)
CVM[111] and (b) CSA.[107]
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to those shown in Figures 29(a) and (b) but not presented
here.

An important question is: can one calculate metastable
phase diagrams that are topologically correct using the ther-
modynamic models developed for each phase in terms of
stable ternary phase equilibrium data and the binary ther-
modynamic descriptions? If one can, then the calculated
metastable phase diagram can be used to study phase trans-
formations and is likely to motivate researchers to synthe-
size metastable phases with desirable properties via novel
experimental techniques. As shown in Figures 30(a) and (b),
the calculated � � �� (or A1 � L12) phase equilibria in
the Ni-rich corner are nearly the same, as anticipated, since
they correspond to the stable equilibria, as can be seen from
Figure 29(a). Moreover, the calculated metastable phase
equilibria away from the stable region, although different
in these two diagrams, are consistent with the phase rule.
In other words, the extensions of the phase boundaries to

the metastable region show the existence of two-phase fields
of L12 � L10, A1 � L10 as well as immiscibility of the
A1 phase with the corresponding three-phase field toward
the Al-rich corner. It is worth noting that Zhang et al.[106]

had shown an immiscibility gap occurring in the A1 phase
on the Al-rich side of the calculated metastable fcc Al-Ni
binary diagram, as shown in Figure 31(a). It is noteworthy
to point out that the topological features given in Figure
31(a) are the same as those obtained from first principle cal-
culations coupled with the CVM.[116] For Figure 30(b), the
liquid phase appears in the Al-rich corner with corresponding
two- and three-phase fields involving the liquid phase. It is
interesting also to compare the calculated metastable fcc
isopleth with 2 mol pct Cr with that of Ni-Al,[106] as shown
in Figure 31. Figure 31(a) shows that the A1(fcc) phase is

(a)

(b)

Fig. 29—Comparison of calculation with experimental data of Ni-Al-Cr:[108]

(a) 1273 K (1000 °C) isothermal section and (b) the �-solvus at constant
values of Al.

(a)

(b)

Fig. 30—CSA-calculated metastable isotherms of Ni-Al-Cr at 1273 K
(1000 °C)[108]: (a) phase equilibria involving only the fcc phases and (b)
phase equilibria involving only the fcc and the liquid phases.
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stable at high temperatures. With decreasing temperature,
the L10 appears at 50 mol pct Ni, the L12 phase at 75 mol
pct Ni, and two A1 (fcc) phases toward the Al-rich side.
The calculated isopleth with 2 mol pct Cr shown in Figure
31(b) has similar features except (1) a three-phase field of
A1 � A1 � L10 appears between the 2 two-phase fields of
A1 � A1 and A1 � L10 and (2) both the L10 and L12 phases
no longer melt congruently as should be the case. These
results are expected since a binary invariant such as the
binary monotectoid, A1 � A1 � L10, becomes a tie-trian-
gle in the ternary region over a range of temperatures. Of
course, there is also another three-phase equilibrium of A1 �
L10 � L12 also shown in this diagram at �1470 K and
�60 mol pct Ni.

Figure 32 shows a calculated liquidus projection of the
metastable Ni-Al-Cr ternary involving only the fcc and liq-
uid phases. As shown in this figure, if the fcc phase were
the only stable solid one, there would be a large range of
compositions where the primary phase of solidification is

the fcc-(Cr,Al,Ni) phase. The next one is the L10 phase and
the last one the L12 phase. It would indeed be interesting
to carry out some rapid quenching experiments such as melt
spinning to confirm the calculated metastable liquidus pro-
jection. The phase diagrams for the binary Al-Cr and Ni-
Cr systems are simple and are not presented here. The fcc
solid solution of (Al,Cr) melts congruently at 82 at. pct Ni
with a maximum temperature of 1566 K. On the other had,
the fcc solid solution of (Ni,Cr) also melts congruently at
95 mol pct Cr with a minimum temperature of 1470 K.
Moreover, the temperatures of the liquidus and solidus are
very close to each other within 5 K. Figures 33(a) and (b)
show the CSA-calculated metastable binary phase diagram
of Al-Ni and an isopleth with a value of xCr � 0.02 when
only the fcc and liquid phase exist. As shown in Figure
33(a), the L10 phase melts congruently and the L12 phase
(��) melts peritectically as in the stable Al-Ni phase dia-
gram.[117] As a matter of fact, the calculated peritectic tem-
perature of 1647 K is close to that of 1645 K in the stable
Al-Ni diagram. On the other hand, the melting point of the
L10 phase at 1560 K is much lower than the melting point
of the stable �-NiAl (B2) phase at 1924 K (calculated) or
1915 K (experimental value with an uncertainty of 	15 K).
This is understandable since the � phase is thermodynam-
ically much more stable than the L10 phase. On the Al-rich
side, a eutectic forms at a lower temperature than in the sta-
ble diagram. This is again anticipated since the intermetal-
lic in the stable Al-Ni binary does not appear in this metastable
phase diagram.

In view of the success of extending the CSA to calculate
ternary Ni-Al-Cr properties, some of my graduate students
are currently attempting to extend the use of the CSA to cal-
culate phase diagrams of higher order alloy systems beyond
three components.

It is worth noting that Kusoffsky et al.[118] and Abe and
Sundman[119] have suggested modifications to the compound
energy formalism (CEF),[96] used widely in the Calphad com-
munity, in an attempt to take into account the effect of SRO.

(a)

(b)

Fig. 31—CSA-calculated metastable fcc phase diagrams: (a) binary Ni-
Al[106] and (b) an isopleth of Ni-Al-Cr with xCr � 0.02.[108]

Fig. 32—CSA-calculated metastable liquidus projection of Ni-Al-Cr con-
sidering only the fcc and liquid phases in Ni-Al-Cr.[108] The solid circles
indicate congruent melting.

01-E-TP-05-340B-Lect  1/11/06  10:40 AM  Page 30



METALLURGICAL AND MATERIALS TRANSACTIONS B VOLUME 37B, FEBRUARY 2006—31

(a)

(b)

Fig. 33—CSA-calculated metastable phase diagrams involving only the fcc
and liquid phases: (a) Ni-Al[106] and (b) an isopleth with xCr � 0.02.[108]

The CEF is rather complex and the readers are referred to
the original article for a detailed description.[118] I will only
give a brief summary. In its simplest form, the Gibbs energy
in the CEF consists of three terms: one from end member
compound energies, one from ideal mixing on the sublat-
tices, and the third is an excess Gibbs energy. The latter is
represented by Eq. [1], except that the parameters corre-
sponding to interactions between atoms on different sublat-
tices are introduced and referred to as the L parameters.
These can be of many different types, with the ones of inter-
est in the present context being the so-called reciprocal L
parameters. When no reciprocal L parameters are used in
the CEF, a Cu-Au phase diagram originally calculated by
Shockley is obtained and is found to be topologically unsat-
isfactory. The introduction of the reciprocal L parameters,
on the other hand, has been shown to account for the topo-
logical features of the Cu-Au phase diagram in a more sat-
isfactory manner.[118] It should be appreciated, however, that
this has been achieved without the explicit introduction of
SRO. The effect of the reciprocal L parameters is to make

the mixing enthalpy of the disordered phase more exother-
mic while having a minimal effect on the mixing enthalpy
of the ordered phase. The configurational entropy of the dis-
ordered phase still corresponds to that of a random solution,
i.e., there is no SRO present. The ability of the CVM and
CSA, on the other hand, to describe the topological features
of the Cu-Au phase diagram comes directly from the con-
figurational entropy of mixing contribution to the Gibbs
energy, i.e., SRO is explicitly considered.

Figures 34 and 35 show, respectively, a CSA-calculated
and a CEF-calculated ordering phase diagram for the fcc
phases in a binary A-B using the same pair exchange energy
parameter, WAB � �10,000 J mol�1. For the CSA, a value
of 
 � 1.3 is used. It is evidently clear from Figure 34 that
the topological features of the CSA-calculated diagram are
identical to those of the CVM-calculated[100] and experi-
mental phase diagram.[7] On the other hand, the topological
features of the CEF-calculated phase diagram are the same
as those calculated by Shockley.[97] In other words, all three

Fig. 35—Ordering phase diagram for the fcc phases calculated by the CEF
using UAB � �10,000 J mol�1. The UAB is the same as WAB.

Fig. 34—Ordering phase diagram for the fcc phases calculated by the CSA
using a pair exchange energy, WAB � �10,000 J mol�1, with a value of

 � 1.3.
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ordered phases, i.e., L12, L10, and L12, transform to the
disordered state at 50 mol pct. In addition, two 211 phases,
or AABX with X being a mixture of A and B, form at lower
temperatures. However, when a constant value of �10,000 J
mol�1 is introduced for all 24 reciprocal L parameters, as
given in Table IV, the topological features of the modified
CEF-calculated diagram, as shown in Figure 36, correspond
closely to those of the CVM- and CSA-calculated diagrams
as well as the experimental one. The difference is the appear-
ance of the two 211 phases in the modified CEF-calculated
diagram. Shown in Figure 37 are the CEF- and modified

CEF-calculated ordering phase diagrams of a binary A-B,
the former shown in black and the latter in red color.

Values of the Gibbs energy for the fcc phases at 50 mol
pct calculated by CVM, CSA, CEF, and modified CEF are
presented in Figure 38(a) as a function of temperature. The
two Gibbs energy curves calculated by CVM and CSA are
nearly the same, while the CEF-calculated values differ appre-
ciably. First, the transformation from the ordered structure to
the disordered one is of second order; and second, values of
the Gibbs energy are more positive. With the introduction of
the 24 reciprocal L parameters in the modified CEF, the cal-
culated Gibbs energy values exhibit also a first-order phase
transition. Let us now examine the CVM-, CSA-, CEF-, and
modified CEF-calculated values of the enthalpy and entropy
as a function of temperature shown in Figures 38(b) and (c).
As shown in Figure 38(c), values of the entropy calculated
by CVM and CSA are nearly the same while those of the mod-
ified CEF-calculated values are considerably higher. The appre-
ciable differences in the calculated entropy values are due to
the fact that SRO is taken care of in both the CVM and CSA
but not in the modified CEF. In other words, the entropy of
mixing in the modified CEF remains random and no SRO is
accounted for. The larger entropy values obtained from the
modified CEF are compensated for by the more positive
enthalpy values, as shown in Figure 38(b). Compensation of
these two quantities allows the calculated Gibbs energy val-
ues in the disordered and ordered phases to become identical
at the desired transition temperature. This is achieved by adjust-
ing the values of the reciprocal L parameters. Although it is
possible to use this approach to obtain the topological features
of a binary system based on the fcc structure, the entropy of
mixing clearly does not include the existence of SRO. More-
over, the existence of the 211 phases also occurs at lower tem-
peratures using the modified CEF; however, they do not appear
in the CVM- and CSA-calculated phase diagrams.

B. Use of the CSA for Calculating Coherent Interphase
Boundary Energies

In addition to bulk thermodynamic properties, interphase
boundary (IPB) energies are also essential in describing

Table IV. Reciprocal Parameters Used to Calculate the Phase
Diagrams in Figures 36 and 37 and the Thermodynamic

Properties in Figure 38(a) through (c)

Index Type Value, J mol�1

1 LA,B:A,B:A:A �10,000
2 LA,B:A,B:A:B �10,000
3 LA,B:A,B:B:A �10,000
4 LA,B:A,B:B:B �10,000
5 LA,B:A:A,B:A �10,000
6 LA,B:A:A,B:B �10,000
7 LA,B:B:A,B:A �10,000
8 LA,B:B:A,B:B �10,000
9 LA,B:A:A:A,B �10,000

10 LA,B:A:B:A,B �10,000
11 LA,B:B:A:A,B �10,000
12 LA,B:B:B:A,B �10,000
13 LA:A,B:A,B:A �10,000
14 LA:A,B:A,B:B �10,000
15 LB:A,B:A,B:A �10,000
16 LB:A,B:A,B:B �10,000
17 LA:A,B:A:A,B �10,000
18 LA:A,B:B:A,B �10,000
19 LB:A,B:A:A,B �10,000
20 LB:A,B:B:A,B �10,000
21 LA:A:A,B:A,B �10,000
22 LA:B:A,B:A,B �10,000
23 LB:A:A,B:A,B �10,000
24 LB:B:A,B:A,B �10,000

Fig. 37—Two ordering phase diagrams for the fcc phases calculated by the
CEF and the modified CEF using the energy parameter and reciprocal param-
eters given in Figs. 35 and 36, respectively.

Fig. 36—Ordering phase diagram for the fcc phases calculated by the
modified CEF using UAB � �10,000 J mol�1 with the 24 reciprocal param-
eters given in Table IV. All the reciprocal parameters are taken to be
�10,000 J mol�1.
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late these quantities, such as the calculation of the IPB ener-
gies between two immiscible phases in binary alloys using
the regular solution mode by Lee and Aaronson[120] and those
between the fcc (A1) phase and the ordered phase (L12)
using the CVM by Kikuchi and Cahn.[121] In the following,
I will first present the CSA-calculated IPB energies between
prototype A1-(Cu,Au) and L12-(Cu3Au) by Cao et al.,
which[122] are in accord with the CVM ones by Kikuchi
and Cahn. I will then present the CSA-calculated values
between the A1 and L12 phases in Al-Li and Ni-Al alloys,
respectively. Last, I will present some CSA-calculated results
on the effect of decreasing the layer thickness in a multi-
layered nanostructure on the critical temperature of a binary
miscibility gap.

Figure 39 shows a schematic representation of a super-
cell consisting of the fcc (A1) structure on the left and the
L12 structure on the right with a (100) IPB between them.
It is understood that the number of lattice planes for these
two phases are many more than the four shown in this fig-
ure and the number of the lattice planes in the IPB depends
on the IPB energy. The interfacial energy � is the excess
Gibbs energy of the entire system per unit interfacial area
A due the existence of the interface. Thus, the interfacial
energy is the difference between the total energy of the entire
system less the bulk energy of the two phases normalized
by the interfacial area as

[6]

The symbols � and A have been defined as noted above; 

G is the Gibbs energy of the entire system and is 

the Gibbs energy of the bulk alloy, with �i and xi being the
chemical potential and the mole fractions of the component i.
Following the approach of Kikuchi and Cahn,[121] values of
the IPB energies were calculated as a function of tempera-
ture using the CSA instead of the CVM. The results are pre-
sented in Figures 40(a) and (b). In both cases, the tetrahedron
approximation was used. Cao et al.[122] used a pair exchange
energy W for the CSA calculation from Oates et al.[104] As
shown in Figure 40(b), the CSA-calculated IPB energies for
the (100) plane are in accord with those given in Figure
40(a) calculated by Kikuchi and Cahn from the congruent

a
C

i�1
mixi

s �
1

A
cG � a

C

i� 1
mixi d

Fig. 39—A schematic supercell with a (100) IPB between an fcc (A1) phase
and an L12 phase in a binary A-B. The black spheres represent A atoms
such as Cu and Ni and the white spheres B atoms such as Au and Al. The
gray color with differing intensities represents solution (A, B) with differ-
ing concentrations. The left side of this supercell represents the fcc (A1)
phase and the right side the L12 phase. Only four lattice planes are shown
but in reality there are many more than four.

Fig. 38—The entropy, enthalpy, and Gibbs energy calculated by CVM,
CSA, CEF, and modified CEF as functions of temperature at 50 mol pct.

phase transformations in an alloy and its subsequent
microstructure evolution when this alloy is subjected to a
thermal treatment. Yet, experimental data of IPB energies
are rarely available due to the experimental difficulties in
determining these quantities. This is particularly true for
multicomponent alloys, and yet most real alloys are multi-
component. However, there have been attempts to calcu-
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point down to low temperatures. As also shown in Figure 41(b),
the CSA-calculated concentration profile for the (100) IPB
between these two phases at the congruent point are also in
accord with the CVM-calculated values shown in Figure
41(a). Clearly, a diffused interface exists between the A1
and the L12 phases. As noted previously,[121,123] the vanish-
ing of the calculated IPB energy at 0 K using the tetrahe-
dron approximation is due to the neglect of the longer range
interaction in the lattice. Using the tetrahedron-octahedron
approximation of the CVM (TO-CVM), expressed in terms
of the parameter , Asta[123] calculated
the phase diagrams of the prototype Cu-Au binary and then
the coherent IPB energies between the fcc-(Cu,Au) and the
L12-(Cu3Au) phases. The terms and denote the
next nearest neighbor and the nearest neighbor pair exchange
energies, respectively. Figures 42(a) and (b) show the TO-CVM

WAB
(1)WAB

(2)

a � WAB
(2) /WAB

(1) � �0.1

and tetrahedron-pair approximation of the CSA (TP-CSA)
calculated phase diagram and coherent IPB energies between
the fcc-(Cu, Au) and L12-Cu3Au phases for the (100) planes.
The TO-CVM calculated values were taken from Asta[123]

and shown in these figures as discrete points while the TP-
CSA-calculated values are plotted as smooth curves. As
shown in Figure 42(b), the coherent IPB energy at 0 K is
finite and decreases first with increasing temperature and
then changes slowly with further increases in temperatures.
Cao et al.[122] used the TP-CSA to calculate the phase dia-
gram and coherent IPB energies.[124] Their calculated reduced
temperatures expressed as a function of composition as
shown in Figure 42(a) are in accord with the TO-CVM cal-
culated values. Likewise, the TP-CSA calculated coherent
IPB energies given in Figure 42(b) shown as a smoothed
curve are in accord with the TO-CVM calculated results.
Cao et al. did not calculate the values down to 0 K due to
numerical difficulties and they will resolve this difficulty
in the near future. In short, the agreement between the TP-
CSA and TO-CVM calculated IPB energies is encourag-
ing. Indeed Cao et al.[122] proceeded to calculate the IPB

Fig. 40—Calculated coherent IPB energies between the fcc-(Cu, Au) and
L12-Cu3Au phases using the tetrahedron approximation: (a) CVM-calcu-
lated values for the (100) and (110) planes[121] and (b) CSA calculated
values for the (100) planes.[122]

(a)

(b)

(a)

(b)

Fig. 41—Calculated concentration profile for the (100) IPB at the con-
gruent point: (a) CVM[121] and (b) CSA.[122]
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(b)

(a)

Fig. 42—(a) Calculated prototype Cu-Au phase diagram with � � �0.1
with the TO-CVM calculated values shown as discrete points[123] and the
TP-CSA values as smoothed curves.[122] (b) Calculated IPB energies between
the fcc and L12 phases with � � �0.1. The TO-CVM calculated values
are shown as discrete points[123] and the TP-CSA values as a smoothed
curve.[122]

energies between the fcc and L12 phases in binary Al-Li and
Ni-Al.

As shown in Figure 43(a), the TP-CSA calculated IPB
energies are in accord with the TO-CVM calculated val-
ues.[123] Within the uncertainties of the measurements, there
is agreement between the calculated values and the experi-
mental data of Hoyt and Spooner[125] and Baumann and
Williams.[126] Figure 43(b) shows that the TP-CSA calcu-
lated IPB energies between � and �� in Ni-Al are in accord
with the experimental values of Ardell.[127] Ardell re-eval-
uated the data of Marsh and Chen[128] and obtained values
in the range of 2 mJ/m2, which are not shown in this fig-
ure. It is worth noting that Dr. Chris Woodward, AFRL/
MLLM (Wright-Patterson AFB, OH),[129] shared his calcu-
lation of IPB energies between � and �� in Ni-Al with me.
He used a first principles cluster expansion method cou-

pled with Monte Carlo calculations to estimate the interfa-
cial width and excess free energy in � and �� in Ni-Al. For
temperatures in the range of experimental measurements
(Figure 43(b)), his calculated IPB energies are in good agree-
ment with our estimates, and with the available results from
experimental measurements. These results indicate that the
CSA, computationally less demanding than the CVM, offers
an alternative and perhaps practical approach to calculate
(or estimate) coherent IPB energies for � and �� in other
binary Ni alloys and likely ternary and higher order Ni alloys
of practical importance. Graduate students in my group have
been exploring the possibility of extending the CSA to cal-
culate IPB energies between � and �� to higher order alloys
such as Ni-Al-Cr.

The use of CSA to calculate coherent IPB energies was
also extended by Cao et al.[130] to investigate the effect of
the layer-thickness M in a multilayered nanostructure on the
critical point of an immiscible binary A-B. The symbol M

(a)

(b)

Fig. 43—(a) Comparisons of TP-CSA-calculated coherent IPB energies
between fcc-(Al) and L12-Al3Li[122] with the TO-CVM values[123] and the
experimental data.[125,126] (b) Comparisons of TP-CSA-calculated coherent
IPB energies between � and �� in Ni-Al[122] with experimental data.[127,128]
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denotes the number of lattice planes for each metal layer.
When the thickness of a metal layer in such a structure
decreases, the contribution of the coherent IPB energy to
the total Gibbs energy is no longer small, as for the bulk
case. It is this IPB energy that contributes to the lowering
of the critical temperature. On the other hand, the surface
energy contribution is negligible in a multilayered nano-
structure structure since there are only two surfaces and can
be neglected. Cao et al. showed that CSA-calculated results
are essentially the same as the CVM-calculated values[131]

but differ somewhat from those calculated using the regu-
lar solution model (RSM).[120] Figure 44 shows the effect of
decreasing M on the miscibility gap with the solid curve
being the miscibility gap for a binary A-B in the bulk. The
RSM-calculated gap is plotted from pure A to 50 mol pct
B, while the CSA-calculated gap is plotted from 50 mol
pct B to pure B. When M decreases, the temperatures of the
gap also decrease when compared with that for the bulk
alloys. The CSA-calculated temperature of the gap decreases
faster than the RSM-calculated one.

V. CONCLUSIONS

This article consists of three major parts on computational
thermodynamics: phase diagram calculation in teaching - Sec-
tion II (see page 2), applications - Section III (see page 10) and
research - Section IV (see page 20). In the section on teach-
ing, I presented first the relationships between the topologi-
cal features of a simple binary phase diagram and the relative
thermodynamic stability of the liquid phase vs that of the solid
phase using a strictly regular solution model. The important
message to be conveyed to students is that the characteristic
features of phase equilibria are governed by the relative ther-
modynamic stability of one phase vs the other. For instance,
under what conditions does maximum congruent melting take
place and under what other conditions does a eutectic form?
By using either commercial software or one written by a
student herself or himself, she or he is able to change the solu-

tion parameters and obtain many different types of phase dia-
grams. An interesting and counterintuitive example is the for-
mation of a closed miscibility gap in a ternary when the regular
solution parameters for all three constituent binaries are neg-
ative. This occurs when the regular solution parameters for
two of them are negative and about the same in value but that
of the third binary is appreciably more negative.

Since most commercial alloys are multicomponent, i.e.,
greater than three, often as many as ten, visualization of mul-
ticomponent phase diagrams is extremely challenging. Using
phase diagram calculation software, the following phase and
related diagrams were calculated and presented: (1) a liq-
uidus projection of a quaternary Al-Cu-Mg-Si system in the
Al-rich corner, (2) an isopleth, i.e., a temperature composition
section, (3) a reaction scheme, (4) the phase fractions of a qua-
ternary alloy as a function of temperature when solidified under
nonequilibrium conditions, and (5) the liquid compositions as
a function of temperature during nonequilibrium solidification.
These diagrams provided most of information needed during
the solidification of a quaternary Al-Cu-Mg-Si alloy.

In Section III on applications, I provided five examples to
show the importance of computational thermodynamics includ-
ing phase diagram calculations for materials research/devel-
opment and manufacturing. They are as follows. (1) The use
of an efficient strategy to develop a thermodynamic descrip-
tion of Mo-Si-B-Ti using a combined computational/experi-
mental approach, on the basis of which multiphase alloys were
identified as potential materials for applications at high tem-
peratures. (2) The use of a calculated isopleth to identify opti-
mum additions of titanium to improve the GFA of a known
quaternary Zr56.28Cu31.3Ni4.0Al8.5 alloy. The addition of Ti
rapidly decreases the liquidus temperature, reaches a mini-
mum at 4.9 mol pct Ti, and then increases again. The GFA
of the 4.9 mol pct Ti alloy, i.e., Zr51.38Cu31.3Ni4.0Al8.5Ti4.9,
increases at least 100 pct in terms of the diameter of the cast
glass rods. (3) Utilization of calculated fractions of solids
formed under nonequilibrium conditions in the weld pool and
PMZ to eliminate or at least minimize liquation cracking in
Al welds. An Al weld consists of the weld pool diluted with

Fig. 44—Calculated phase diagrams of A/B multilayered nanostructure as a function of M using CSA[130] and RSM.[120] The symbol denotes the number
of lattice planes per layer of the metal.
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added fillers and the PMZ. The PMZ is essentially the base
metal whose composition differs from that of the weld pool.
The criterion for liquation cracking is when the fractions of
solid in the weld pool during the later stage of solidification
are larger than those of the PMZ. When the reverse is the
case, liquation cracking does not occur. The experimental
results obtained from many studies are in accord with the cal-
culated fractions of solids in the PMZ and the weld pool. This
means one can select an appropriate filler metal based on cal-
culated results using a thermodynamic database of Al alloys.[29]

(4) Based on a simple thermodynamic formulation, compo-
sitions of (Al,Zr) alloys were calculated to exhibit tenden-
cies to form amorphous thin films obtained via a rapid cooling
process such as sputter deposition. The calculated alloy com-
positions were substantiated experimentally. These results
indicate that this thermodynamic approach could be used for
other alloy systems when their thermodynamic descriptions
are available. (5) In the last example, I have shown that com-
putational thermodynamics can be used reliably to calculate
the beta transus of Ti6Al4V for certification when a manu-
facturer sells this metal. This eliminates the costly approach
of obtaining this information experimentally for certification
for each batch of the metals produced. As long as the com-
positions of Ti6Al4V are known, the beta transus can be read-
ily calculated in a timely manner.

In Section IV on research, I focused on the potential of using
the CSA to describe the fcc phases instead of either the
Bragg–Williams approximation or the CVM. The CSA retains
the strengths of the Bragg–Williams approximation and is
thus computationally less demanding than the CVM while
retaining the existence of SRO. Following the Calphad
approach but adopting the CSA for the fcc phases instead of
the Bragg–Williams approximation, it was shown that the agree-
ment between calculated and experimentally determined stable
phase equilibria are as good as previous studies but with fewer
parameters. More importantly, the calculated metastable phase
diagrams such as the solid-state phase diagrams involving only
the fcc phases and the solid/liquid phase diagrams involving
the fcc and liquid phases are what one expects. This implies
that the thermodynamic driving forces calculated using the CSA
should provide more realistic thermodynamic values when
studying phase transformations. All research results to date sug-
gest that the CSA can be readily applied to multicomponent
systems beyond ternaries. I also presented a brief summary of
the modified CEF, based on the Bragg–Williams approxima-
tion, by incorporating reciprocal parameters.[118] This modi-
fied CEF is able to describe the phase diagram of the prototype
Cu-Au binary. It was shown that the ability of this improved
CEF to account for the phase diagram of Cu-Au is due to the
effect of the reciprocal parameters bringing about the relative
stabilization of the enthalpy contribution to the excess Gibbs
energy of the disordered phase at the expense of the ordered
phase. The configurational entropy of mixing of the disordered
phase still corresponds with that for a random solution, i.e.,
there is no short-range order. The CVM and CSA, on the other
hand, account for the phase diagram of Cu-Au in terms of the
existence of SRO, i.e., in the entropy contribution to the Gibbs
energy.

In addition to phase diagram calculations, the CSA has
been used successfully to calculate the IPB energies between
the fcc (A1) and L12 structure not only for prototype Cu-
Au alloys but also for two binary systems, i.e., IPB ener-

gies between (Al) and Al3Li and � and �� in Ni-Al. It appears
promising to extend this approach to higher order alloys.

I have focused in this article only on the Calphad approach
using phenomenological models to calculate phase diagrams.
On the other hand, it is worth noting that significant advances
have also been made in the use of the first principles approach
coupled with CVM or cluster expansion to calculate phase dia-
grams. Readers are referred to an article by van de Walle and
Ceder,[132] which uses this approach in calculating prototype
phase diagrams without experimental data Even thought it is
extremely challenging to extend this approach to calculate phase
diagrams of real alloys in agreement with experimentally deter-
mined ones, I believe continual advances are being made. More-
over, some of the first principles calculated alloy energetics
could be readily used to obtain thermodynamic descriptions of
real alloys, particularly for the metastable and unstable phases.
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