Title:

Tensile and Microindentation Stress-Strain Curves of Al-6061

Authors:

Jordan S. Weaver^{1,2}, Ali Khosravani¹, Andrew Castillo¹, Surya R. Kalidindi^{1,*} ¹George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA ²Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA * Corresponding author. Tel.: +1 404 385 2886. E-mail address: surya.kalidindi@me.gatech.edu (S. R. Kalidindi). URL: http://mined.gatech.edu/

Abstract:

Recent spherical microindentation stress-strain protocols were developed and validated on Al-6061 (DOI: 10.1186/s40192-016-0054-3). The scaling factor between the uniaxial yield strength and the indentation yield strength was determined to be about 1.9. The microindentation stressstrain protocols were then applied to a microstructurally graded sample in an effort to extract high throughput process-property relationships. The tensile and microindentation forcedisplacement and stress-strain data are presented in this data set.