2.1 Summary of modified Lemaitre model: 


The strain rate is decomposed in to elastic and plastic parts and is given as follows

[bookmark: ZEqnNum310969]		
The elastic strain rate is related to stress rate by

		

where  is the elastic modulus tensor for the un-damaged material.  The plastic strain rate is related to stress through an isotropic visco-plastic constitutive equation given as

[bookmark: ZEqnNum987994]		


where,  is the Cauchy (true) stress and the effective plastic strain rate is computed as

[bookmark: ZEqnNum600406]		


The void volume parameter  increases with plastic strain. The evolution equation for is changed in this report in order to account for the rapid void dilation at larger plastic strains. The evolution of void volume fraction in ferrite and martensite at different triaxialities up to an effective plastic strain of 0.5 is provided in Figure 1. The evolution equations can be approximated by exponential functions that are summarized in Table 1. The following are the generic void dilation equations for ferrite and martensite phases of Q&P980 steels

 		


		





where, are proportionality functions for ferrite and martensite respectively. These proportionality constants are functions of triaxialities. and are obtained by plotting the exponential constants (see Table 1) with respect to the triaxiality at which they are obtained (Figure 2). By curve fitting, the expressions for and are obtained as

 		
On the other hand, the evolution equation for void elongation ratio is not changed and is given as follows

		


where  and  are void elongation parameters. The values of these constants for ferrite and martensite are summarized in Table 2. The local failure of the material is assumed to happen when once either the void dilation or elongation exceeds a certain critical value which is given as   

[bookmark: ZEqnNum675509]		

Element removal for 



where, and  are critical damage parameter and critical void elongation ratio, respectively.  The initial void elongation ratio and void volume are assumed to be  and  , respectively. 

[bookmark: _Ref455775399]Figure 1: Evolution of void volume fraction in ferrite and martensite.


Note: the parameters  and can either be evaluated by fitting the experimental load displacement curves or by using tomography results. 


Assumptions associated with the modified Lemaitre model: The modified Lemaitre model is an isotropic damage model, i.e. it does not account for the local anisotropy caused by microvoid elongation. This model accounts for the damage due to both microvoid dilation and elongation and neglects the damage due to microvoid rotation. The ultimate failure of the material can be triggered when either void volume fraction exceeds a certain critical damage parameter or when the cumulative void elongation ratio exceeds a certain critical void elongation ratio . In this model, microvoid dilation is solely responsible for the local softening of the material and microvoid elongation does not cause any local softening. This model can pinpoint the microscopic damage mechanism that is responsible for the macroscopic fracture initiation.  

[bookmark: _Ref455775453]Figure 2: Proportionality constants for ferrite and martensite.
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[bookmark: _Ref455775418]Table 1: Void evolution equations at different triaxialities.



	Parameter
	Ferrite
	Martensite
	Effective parameters

	

	2.39
	1.46
	1.925

	

	4.01
	3.58
	3.795



[bookmark: _Ref448338801]Table 2: Microvoid dilation and parameters for ferrite and martensite.


3. Calibration of the modified Lemaitre Model: calibration of the modified Lemaitre model is performed in two steps: 1) calibration of the hardening curve from isotropic three phase RVE and 2) calibration of  and .
Step-1: calibration of model parameters for hardening curve: In the previous report the hardening curve is obtained from the fracture experiments. In this report, the experimental hardening curve is replaced by multiscale hardening curve. The model properties that define the multiscale hardening curve are obtained by uniaxially deforming an isotropic three phase RVE, obtaining the nominal stress strain curve and by finding the model parameters of a rate dependent plasticity model that fit this stress strain curve. The model parameters that define the multiscale hardening curve are summarized in Table 3.  
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[bookmark: _Ref448340489]Table 3: Rate dependent plasticity hardening parameters for Q&P980 steels (calibrated from three phase isotropic RVE).










Step-2: calibration of  and : the parameters  and are calibrated from fracture experiments. Microvoid dilation is dominant at high triaxialities and microvoid elongation is dominant at low triaxialities. For this reason, is calibrated from C-notch and is calibrated from PS-1 (see Figure 3). The void dilation equation for Ferrite is conservatively assumed as the void dilation equation for Q&P980 steel (Eq.(5) and Eq.(7a)). The effective parameters (averaged parameters) presented in Table 2 are used as void elongation parameters. A critical void volume fraction of and critical void elongation ratio are found to accurately reproduce the macroscale fracture strains in C-notch and PS1 (Figure 4), respectively and are taken as calibrated fracture parameters. The evolution of and  in critical finite elements in C-notch and PS-1 are also plotted in Figure 4. 

[bookmark: _Ref455823223]Figure 3: Initial triaxialities of fracture specimens (highlighted specimens are used for calibration).

[bookmark: _Ref455823395]Figure 4: Calibration of fracture parameters from C-notch and PS-1.


4. Validation of the modified Lemaitre Model: The modified Lemaitre Model is validated by predicting the load displacement behavior until fracture for the specimens that are not used for calibration. The predictions of the proposed model along with experimental results are presented in the Figure 5 for U-notch, PS-2 and ST specimens. From Figure 5, it is clear that the calibrated modified Lemaitre model is able to predict the fracture strains fairly well. The evolution of and  in critical finite elements for the specimens used in validation are plotted in Figure 6. While in ST and U-notch the fracture occurred due to simultaneous dilation and elongation of voids, PS-2 failed due to dominant void dilation.

[bookmark: _Ref455823527]Figure 5: Comparison of Experimental and modified Lemaitre model load displacement predictions. 
5. Specimen fracture locus: A specimen fracture locus is drawn by combining the experimental fracture results with finite element analyses (Figure 7(a)). The specimen fracture locus is obtained by plotting the specimen triaxiality with respect to relative displacement. The specimen triaxiality is defined as the average initial triaxiality in the critical cross section (least cross section see Figure 7(b)) of the specimen. The relative displacement is defined as the ratio between change in the gage length to the gage length (see Figure 7(c)). A gage length of 11.2 mm is chosen. The experimental specimen fracture locus (relative displacement obtained from DIC data) and computational specimen fracture locus for Q&P980 steels is plotted in Figure 7(a). From Figure 7(a), the performance of modified Lemaitre model is reassured.


[bookmark: _Ref455823582]Figure 6: Failure initiation locations and evolution of damage parameters in the validation specimens.
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(b)
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[bookmark: _Ref455823655]Figure 7: (a) specimen fracture locus; (b) sample critical cross sections and (c) sample gage lengths.
[bookmark: _GoBack]
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