Cu–Si–Zn and Cu–Zn Experimental investigation and thermodynamic modeling
Date
2013-03-30Author
Du, Y.
Liu, Shuhong
Liu, Z.-K.
Shang, S.-L.
Wang, Jiang
Wang, Peisheng
Xu, Honghui
Zhang, L.
Zhang, Weiqing
Metadata
Show full item recordAbstract
The isothermal section of the Cu–Si–Zn ternary system at 600 °C was experimentally determined with fifteen alloys by means of optical microscopy, X-ray diffraction, and the scanning electron microscopy with energy dispersive X-ray spectroscopy. At 600 °C, no ternary compounds were observed, and five three-phase equilibria were well determined. In particular, the longstanding controversy regarding the four three-phase equilibria in the Cu-rich corner involving the phases α, β, γ- Cu5Zn8, and κ- Cu7Si was resolved experimentally in the present work. In an effort to provide a compatible thermodynamic description of the Cu–Si–Zn system for the multi-component Al-based thermodynamic database, the Cu–Zn system was remodeled using the CALPHAD approach with a new sublattice model Zn4(Cu,Zn)1(Cu,Zn)8 for the γ- Cu5Zn8 phase. Besides, the temperature dependence of enthalpy of mixing was also taken into account for the liquid phase. Subsequently, a thermodynamic description of the Cu–Si–Zn system was obtained over the entire composition range based on the presently modeled Cu–Zn system and the experimental data from the literature and the present measurements. It is found that most reliable experimental data in this ternary system are satisfactorily reproduced by the present thermodynamic modeling.
This item URI
http://hdl.handle.net/11115/85Collections
Except where otherwise noted, this item's license is described as Attribution-ShareAlike 3.0 United States
Related items
Showing items related by title, author, creator and subject.
-
Ag-Al Functional Description
Du, Zeting; Jing, Zhan-Peng; Li, Changrong; Niu, Chunji (2013-01-31)The energy expressions for GP zones in the Al–Ag binary system, including the ε-state and the η-state ones, are established by combining the essential Gibbs energy for the matrix alloy with the interfacial energy and the ... -
Li–O Thermodynamic assessment
Chang, Keke; Hallstedt, B. (2013-03-30)The Li–O system has been investigated by means of the CALPHAD approach. The phase equilibria and thermodynamic data of this system are critically reviewed and assessed. The liquid phase and two stable lithium oxides, Li2O ... -
Mg–Nd, Mg–Zn, and Mg–Nd–Zn Thermodynamic description on the miscibility gap
Du, Zhenmin; Guo, Cuiping; Li, Changrong; Liu, M.; Niu, C.J. (2013-03-29)With the consideration of the existence of the metastable miscibility gaps, the thermodynamic parameters of the Mg-based solid solution have been assessed for the Mg–Zn and Mg–Nd systems. The new semi-empirical equation ...