Show simple item record

dc.contributor.authorBarnett, Blake
dc.date.accessioned2023-06-03T23:49:17Z
dc.date.available2023-06-03T23:49:17Z
dc.identifier.urihttps://hdl.handle.net/11256/1003
dc.description.abstractCollision welding is a solid-state joining process which uses shock pressures developed during impact to metallurgically bond flyer and target plates. Various analytical expressions have been developed to describe the process boundaries for ideal welds in the welding velocity-impact angle plane. Existing process boundaries assume symmetric weld members, and/or symmetric post-impact weld behavior (stress partitioning and propagation velocities, peak temperatures, and cooling rates) which are not applicable to the majority of collision welding applications, which use dissimilar weld members. This work extends and modifies existing weld window boundaries through the application of elementary shock physics (Rankine-Hugoniot Relations) via discrete numerical calculations for permutations of weld pairs across approximately 30 elemental and alloy metals. Existing formulations of relevant process boundaries are also included for completeness. The MATLAB program used to generate the datasets and associated plots can be found on GitHub at: https://github.com/BBarnett-615/Collision-Welding-Process-Window-Calculatoren_US
dc.language.isoen_USen_US
dc.relation.isbasedon[1] S. P. Marsh, Ed., LASL Shock Hugoniot Data. University of California Press, 1980. [2] R. H. Wittman, “The influence of collision parameters of the strength and microstructure of an explosion welded aluminium alloy,” in Proceedings of the 2nd International Symposium on Use of an Explosive Energy in Manufacturing Metallic Materials, 1973, pp. 153–168. [3] I. D. Zakharenko, “Thermal state of the weld zone in explosive welding,” Combust. Explos. Shock Waves, vol. 7, no. 2, pp. 229–231, 1971, doi: 10.1007/BF00748979. [4] I. D. Zakharenko and T. M. Sobolenko, “Thermal Effects in the Weld Zone in Explosive Welding,” Fiz. Goreniya y Vzryva, vol. 7, no. 3, pp. 433–436, 1971. [5] A. A. Deribas and I. D. Zakharenko, “Determination of Limiting Collision Conditions for the Explosive Welding of Metals,” Fiz. Goreniya y Vzryva, vol. 11, no. 1, pp. 133–135, 1975. [6] V. V Efremov, I. D. Zakharenko, and S. Division, “Determination of the Upper Limit to Explosive Welding,” Fiz. Goreniya y Vzryva, vol. 3, no. 3, pp. 226–230, 1976. [7] G. H. S. F. L. Carvalho, I. Galvão, R. Mendes, R. M. Leal, and A. Loureiro, “Explosive welding of aluminium to stainless steel,” J. Mater. Process. Technol., vol. 262, no. June, pp. 340–349, 2018, doi: 10.1016/j.jmatprotec.2018.06.042. [8] M. A. Meyers, Dynamic Behavior of Materials. John Wiley & Sons, Inc., 1994. [9] P. Follansbee, “The HEL and Rate-Dependent Yield Behavior,” Proc. 1989 Top. Conf. Shock Compression Condens. Matter, 1989.en_US
dc.relation.uri2023-06
dc.subjectCollision Weldingen_US
dc.subjectImpact Weldingen_US
dc.subjectSolid State Processingen_US
dc.subjectShock Processingen_US
dc.subjectWeldingen_US
dc.subjectJoiningen_US
dc.subjectDissimilar Materialsen_US
dc.titleCalculated Collision Welding Process Windows in Acoustic, Elastic, and Shock Approximationsen_US
dc.typeDataseten_US
dc.typeImageen_US


Files in this item

Icon
Icon
Icon
Icon
Icon
Icon
Icon
Icon
Icon
Icon
Icon
Icon
Icon
Icon
Icon
Icon
Icon
Icon
Icon
Icon
Icon
Icon
Icon
Icon
Icon
Icon
Icon
Icon
Icon
Icon
Icon

This item appears in the following Collection(s)

Show simple item record